Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090305    DOI: 10.1088/1674-1056/ac6860
GENERAL Prev   Next  

Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas

Jian Feng(冯鉴)1, Wei-Wei Zhang(张伟伟)1, Liang-Wei Lin(林良伟)1, Qi-Peng Cai(蔡启鹏)1, Yi-Cai Zhang(张义财)2, Sheng-Can Ma(马胜灿)1, and Chao-Fei Liu(刘超飞)1,†
1 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2 School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
Abstract  Topological superfluid state is different from the normal superfluid one due to the excitation energy gap on the boundary. How to obtain the topological superfluid state by using spin-orbit coupling to control the s-waves paired mass-imbalanced Fermi gas is a recent novel topic. In this paper, we study the topological superfluid phase diagram of two-dimensional mass-imbalanced Fermi gas with Rashba spin-orbit coupling at zero temperature. We find that due to the competition among mass imbalance, pairing interaction and spin-orbit coupling, there is a double-well structure in the thermodynamic potential, which affects the properties of the ground state of the system. We comprehensively give the phase diagrams of the system on the plane of spin-orbit coupling and chemical potential, and the phase diagrams on the plane of the reduced mass ratio and two-body binding energy. This study not only points out the stable region of topological superfluid state of mass-imbalanced Fermi gas, but also provides a detailed theoretical basis for better observation of topological superfluid state in experiments.
Keywords:  topological superfluid      mass-imbalanced      spin-orbit coupling      Fermi gas  
Received:  20 December 2021      Revised:  21 March 2022      Accepted manuscript online:  20 April 2022
PACS:  03.75.Ss (Degenerate Fermi gases)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875149, 11874127, 52061014, and 61565007), the Youth Jing-gang Scholars Program of Jiangxi Province, China and the Program of Qing-jiang Excellent Young Talents, Jiangxi University of Science and Technology.
Corresponding Authors:  Chao-Fei Liu     E-mail:  liuchaofei@jxust.edu.cn

Cite this article: 

Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞) Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas 2022 Chin. Phys. B 31 090305

[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Zhang C, Tewari S, Lutchyn R M and Das Sarma S 2008 Phys. Rev. Lett. 101 160401
[3] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[4] Kubasiak A, Massignan P and Lewenstein M 2010 Europhys. Lett. 92 46004
[5] Tewari S, Stanescu T D, Sau J D and Das Sarma S 2011 New J. Phys. 13 065004
[6] Vyasanakere J P, Zhang S and Shenoy V B 2011 Phys. Rev. B 84 014512
[7] Yu Z Q and Zhai H 2011 Phys. Rev. Lett. 107 195305
[8] Gong M, Tewari S and Zhang C 2011 Phys. Rev. Lett. 107 195303
[9] Iskin M and Subasi A L 2011 Phys. Rev. Lett. 107 050402
[10] Yi W and Guo G C 2011 Phys. Rev. A 84 031608
[11] Yang X S and Wan S L 2012 Phys. Rev. A 85 023633
[12] Zhou J, Zhang W and Yi W 2011 Phys. Rev. A 84 063603
[13] Yi W and Duan L M 2006 Phys. Rev. A 74 013610
[14] Iskin M and Sade Melo C A R 2006 Phys. Rev. Lett. 97 100404
[15] Parish M M, Marchetti F M, Lamacraft A and Simons B D 2007 Nat. Phys. 3 124
[16] Wu F, Guo G C, Zhang W and Yi W 2016 Phys. Rev. Lett. 110 110401
[17] Cui J X, Liu X J, Long G L and Hu H 2012 Phys. Rev. A 86 053628
[18] Yi W and Zhang W 2012 Phys. Rev. Lett. 109 140402
[19] Zheng Z, Pu H, Zou X B and Guo G C 2014 Phys. Rev. A 90 063623
[20] Qiu X Z, Cui X L and Yi W 2016 Phys. Rev. A 94 051604
[21] Huang L H, Peng P, Li D H, Meng Z M, Chen L C, Qu C L, Wang P J, Zhang C W and Zhang J 2018 Phys. Rev. A 98 013615
[22] Feng X J and Y L 2020 Chin. Phys. Lett. 37 020301
[23] Guo G F, Bao X X, Tan L and Gu H Q 2021 Chin. Phys. Lett. 38 040302
[24] Iskin M 2021 Phys. Rev. A 103 023337
[25] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492
[26] Partridge G B, Li W H, Kamar R I, Liao Y A and Hulet R G 2006 Science 311 503
[27] Shin Y, Schunck C H, Schirotzek A and W Ketterle 2008 Nature 451 689
[28] Navon N, Nascimbéne S, Chevy F and Salomon C 2010 Science 328 729
[29] Voigt A C, Taglieber M, Costa L, Aoki T, Wieser W, Hänsch T W and Dieckmann K 2009 Phys. Rev. Lett. 102 020405
[30] Spiegelhalder F M, Trenkwalder A, Naik D, Hendl G, Schreck F and Grimm R 2009 Phys. Rev. Lett. 103 223203
[31] Tiecke T G, Goosen M R, Ludewig A, Gensemer S D, Kraft S, Kokkelmans S J J M F and Walraven J T M 2010 Phys. Rev. Lett. 104 053202
[32] Ravensbergen C, Soave E, Corre V, Kreyer M, Huang B, Kirilov E and Grimm R 2020 Phys. Rev. Lett. 124 203402
[33] Iskin M and Subaşi A L 2011 Phys. Rev. A 84 041610
[34] Wang J B, Guo H and Chen Q J 2013 Phys. Rev. A 87 041601
[35] Sacha K and Delande D 2014 Phys. Rev. A 90 021604
[36] Sogaard C R and Bruun G M 2015 Phys. Rev. A 91 042702
[37] M Jag, Cetina M, Lous R S, Grimm R, Levinsen J and Petrov D S 2016 Phys. Rev. A 94 062706
[38] Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G 2017 Phys. Rev. Lett. 118 083602
[39] Ravensbergen C, Corre V, Soave E, Kreyer M, Kirilov E and Grimm R 2018 Phys. Rev. A 98 063624
[40] Karmakar M 2018 Phys. Rev. A 97 033617
[41] Randeria M, Duan J M and Shieh L Y 1989 Phys. Rev. Lett. 62 981
[42] Sheehy D E and Radzihovsky L 2007 Ann. Phys. 322 1790
[43] Morf R and d'Ambrumenil N 1995 Phys. Rev. Lett. 74 5116
[44] Coleridge P T, Wasilewski Z W, Zawadzki P, Sachrajda A S and Car-mona H A 1995 Phys. Rev. B 52 R11603(R)
[45] Jia W, Huang Z H, Wei X, Zhao Q and Liu X J 2019 Phys. Rev. B 99 094520
[46] Wang Y, Ji W T, Chai Z H, Guo Y H, Wang M Q, Ye X Y, Yu P, Zhang L, Qin X, Wang P F, Shi F Z, Rong X, Lu D W, Liu X J and Du J F 2019 Phys. Rev. A 100 052328
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[6] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[7] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[8] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[9] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[12] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[13] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[14] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[15] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
No Suggested Reading articles found!