Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064304    DOI: 10.1088/1674-1056/ac4e10
RAPID COMMUNICATION Prev   Next  

Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits

Yang Zhou(周扬)1, Zhang-Zhao Yang(杨彰昭)1, Yao-Yin Peng(彭尧吟)1, and Xin-Ye Zou(邹欣晔)1,2,†
1 Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Researches on parity-time (PT) symmetry in acoustic field can provide an efficient platform for controlling the travelling acoustic waves with balanced loss and gain. Here, we report a feasible design of PT-symmetric system constructed by piezoelectric composite plates with two different active external circuits. By judiciously adjusting the resistances and inductances in the external circuits, we obtain the exceptional point due to the spontaneous breaking of PT symmetry at the desired frequencies and can observe the unidirectional invisibility. Moreover, the system can be at PT exact phase or broken phase at the same frequency in the same structure by merely adjusting the external circuits, which represents the active control that makes the acoustic manipulation more convenient. Our study may provide a feasible way for manipulating acoustic waves and inspire the application of piezoelectric composite materials in acoustic structures.
Keywords:  parity-time symmetry      acoustic gain material      piezoelectric composite plate      exceptional point  
Received:  05 December 2021      Revised:  31 December 2021      Accepted manuscript online:  24 January 2022
PACS:  43.40.+s (Structural acoustics and vibration)  
  43.38.Ew (Feedback transducers)  
  43.40.Yq (Instrumentation and techniques for tests and measurement relating to shock and vibration, including vibration pickups, indicators, and generators, mechanical impedance)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11634006, 11934009, and 12074184), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191245), and the State Key Laboratory of Acoustics, Chinese Academy of Sciences.
Corresponding Authors:  Xin-Ye Zou     E-mail:  xyzou@nju.edu.cn

Cite this article: 

Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔) Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits 2022 Chin. Phys. B 31 064304

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201
[3] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[4] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[5] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[6] Longhi S 2010 Phys. Rev. A 82 031801
[7] Sun Y, Tan W, Li H, Li J and Chen H 2014 Phys. Rev. Lett. 112 143903
[8] Zhao H, Fegadolli W S, Yu J K, Zhang Z F, Ge L, Scherer A and Feng L 2016 Phys. Rev. Lett. 117 193901
[9] Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729
[10] Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P and Chen Y F 2019 Adv. Mater. 32 1903639
[11] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[12] Feng L, Wong Z J, Ma R M, Wang Y and Zhang X 2014 Science 346 972
[13] Poshakinskiy A V, Poddubny A N and Fainstein A 2016 Phys. Rev. Lett. 117 224302
[14] Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L and Nori F 2014 Phys. Rev. Lett. 113 053604
[15] Zhu X F, Ramezani H, Shi C Z, Zhu J and Zhang X 2014 Phys. Rev. X 4 031042
[16] Tian Y, Ge H, Lu M H and Chen Y F 2019 Acta Phys. Sin. 68 194301 (in Chinese)
[17] Zhu X Y, Xu Y L, Zou Y, Sun X C, He C, Lu M H, Liu X P and Chen Y F 2016 Appl. Phys. Lett. 109 111101
[18] Wang X, Fang X S, Mao D, Jing Y and Li Y 2019 Phys. Rev. Lett. 123 214302
[19] Merkel A, Romero-Garcia V, Groby J P, Li J and Christensen J 2018 Phys. Rev. B 98 201102
[20] Shen C, Li J F, Peng X Y and Cummer S A 2018 Phys. Rev. Mater. 2 125203
[21] Auregan Y and Pagneux V 2017 Phys. Rev. Lett. 118 174301
[22] Li H X, Rosendo-Lopez M, Zhu Y F, Fan X D, Torrent D, Liang B, Cheng J C and Christensen J 2019 Research 2019 8345683
[23] Ji W Q, Wei Q, Zhu X F, Wu D J and Liu X J 2019 Europhys. Lett. 125 58002
[24] Chen Z, Negahban M, Li Z and Zhu J Y 2020 J. Phys. D-Appl. Phys. 53 095503
[25] Diaz-Robio A and Tretyakov S A 2017 Phys. Rev. B 96 125409
[26] Wang X, Fang X S, Mao D X, Jing Y and Li Y 2019 Phys. Rev. Lett. 123 214302
[27] Liu T, Ma G C, Liang S J, Gao H, Gu Z M, An S W and Zhu J 2020 Phys. Rev. B 102 014306
[28] Wu J Y, Wu X H, Yang X B and Li H Y 2019 Chin. Phys. B 28 104208
[29] Liu T, Zhu X F, Chen F, Liang S J and Zhu J 2018 Phys. Rev. Lett. 120 124502
[30] Lan J, Zhang X W, Wang L, Lai Y and Liu X Z 2020 Sci. Rep. 10 10794
[31] Achilleos V, Theocharis G, Richoux O and Pagneux V 2017 Phys. Rev. B 95 144303
[32] Shi C Z, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y and Zhang X 2016 Nat. Commun. 7 11110
[33] Fleury R, Sounas D and Alu A 2015 Nat. Commun. 6 5905
[34] Shao L B, Mao W B, Maity S, Sinclair N, Hu Y W, Yang L and Loncǎr M 2020 Nat. Electron. 3 267
[35] He Z H, Zhao J B, Yao H, Jiang J N and Chen X 2019 Acta Phys. Sin. 68 134302 (in Chinese)
[36] Wang J W, Wang G, Chen S B and Wen J H 2012 Chin. Phys. Lett. 29 064302
[37] Prasad S, Gallas Q, Horowitz S, Homeijer B, Sankar B V, Cattafesta L N and Sheplak M 2006 AIAA J. 44 2311
[38] Liu F, Horowitz S, Lou C and Sheplak M 2006 12th Aiaa/ceas Aeroacoustics Conference, May 8, 2006, Cambridge, MA
[39] Liu F, Horowitz S, Nishida T, Cattafesta L and Sheplak M 2007 J. Acoust. Soc. Am. 122 291
[40] Chong Y D, Ge L and Stone A D 2012 Phys. Rev. Lett. 108 269902
[41] ISO Standard 10534-2 1998 International Organization for Standardization
[1] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[2] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[3] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[4] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[5] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[6] Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(10): 100309.
[7] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[8] Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios
Jia-Ye Wu(吴嘉野), Xu-Hang Wu(吴栩航), Xiang-Bo Yang(杨湘波), Hai-Ying Li(李海盈). Chin. Phys. B, 2019, 28(10): 104208.
[9] Fabry-Pérot resonance coupling associated exceptional points in a composite grating structure
Zhi-Sen Jiang(蒋之森), De-Jiao Hu(胡德娇), Lin Pang(庞霖), Fu-Hua Gao(高福华), Ping Wang(王平). Chin. Phys. B, 2018, 27(5): 054201.
[10] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[11] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
[12] Bifurcated overtones of one-way localized Fabry–Pérot resonances in parity-time symmetric optical lattices
Fatma Nafaa Gaafer, Yaxi Shen(沈亚西), Yugui Peng(彭玉桂), Aimin Wu(武爱民), Peng Zhang(张鹏), Xuefeng Zhu(祝雪丰). Chin. Phys. B, 2017, 26(7): 074218.
[13] Microscale vortex laser with controlled topological charge
Xing-Yuan Wang(王兴远), Hua-Zhou Chen(陈华洲), Ying Li(黎颖), Bo Li(李波), Ren-Min Ma(马仁敏). Chin. Phys. B, 2016, 25(12): 124211.
[14] The contrast between defect solitons in parity–time symmetric superlattice and simple-lattice complex potentials
Hu Su-Mei(胡素梅) and Hu Wei(胡巍) . Chin. Phys. B, 2012, 21(2): 024212.
No Suggested Reading articles found!