Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 053102    DOI: 10.1088/1674-1056/ac4480
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65)

Bao-Ling Shi(施宝玲)1,†, Yi Qin(秦毅)1,†, Xiang-Fu Li(李向富)2, Bang-Lin Deng(邓邦林)3, Gang Jiang(蒋刚)1,‡, and Xi-Long Dou(豆喜龙)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Electrical Engineering, Longdong University, Qingyang 745000, China;
3 College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
Abstract  Atomic data of highly charged ions (HCIs) offer an attractive means for plasma diagnostic and stars identification, and the investigations on atomic data are highly desirable. Herein, based on the fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method, we have performed calculations of the fine-structure energy levels, wavelengths, transition rates, oscillator strengths, and line strengths for the lowest 21 states of 3p63d8-3p53d9 electric dipole (E1) transitions configurations in Fe-like ions (Z = 57, 60, 62, 64, 65). The correlation effects of valence-valence (VV) and core-valence (CV) electrons were systematically considered. In addition, we have taken into account transverse-photon (Breit) interaction and quantum electrodynamics (QED) corrections to treat accurately the atomic state wave functions in the final relativistic configuration interaction (RCI) calculations. Our calculated energy levels and transition wavelengths are in excellent agreement with the available experimental and theoretical results. Most importantly, we predicted some new transition parameters that have not yet been reported. These data would further provide critical insights into better analyzing the physical processes of various astrophysical plasmas.
Keywords:  Fe-like ions      energy levels      wavelengths      transition rates  
Received:  13 November 2021      Revised:  14 December 2021      Accepted manuscript online: 
PACS:  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.xr (Self-consistent-field methods)  
  31.30.jc (Relativistic corrections to atomic structure and properties)  
  95.30.Ky (Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))  
Corresponding Authors:  Gang Jiang,E-mail:gjiang@scu.edu.cn     E-mail:  gjiang@scu.edu.cn
About author:  2021-12-18

Cite this article: 

Bao-Ling Shi(施宝玲), Yi Qin(秦毅), Xiang-Fu Li(李向富), Bang-Lin Deng(邓邦林), Gang Jiang(蒋刚), and Xi-Long Dou(豆喜龙) Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65) 2022 Chin. Phys. B 31 053102

[1] Guo X L, Huang M, Yan J, Li S, Wang K, Si R and Chen C Y 2015 Chin. Phys. B 25 013101
[2] Fan J Z, Zhang D H, Chang Z W, Shi Y L and Dong C Z 2012 Chin. Phys. Lett. 29 073102
[3] Liu J P, Li C B and Zou H X 2017 Chin. Phys. B 26 103201
[4] Aggarwal S, Singh J and Mohan M 2013 Chin. Phys. B 22 033201
[5] Guo X L, Huang M, Yan J, Li S, Si R, Li C Y, Chen C Y, Wang Y S and Zou Y M 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144020
[6] Wu T, Kawasaki H, Shimada Y, Higashiguchi T and O'Sullivan G 2020 J. Phys. B: At. Mol. Opt. Phys. 53 225701
[7] Aggarwal S, Jha A K S, Khatri I, Singh N and Mohan M 2015 Chin. Phys. B 24 053201
[8] Silwal R, Dreiling J M, Sanders S C, Takacs E and Ralchenko Y 2020 J. Phys. B: At. Mol. Opt. Phys. 53 145002
[9] Sheil J, Dunne P, Higashiguchi T, Kos D, Long E, Miyazaki T, O'Reilly F, O'Sullivan G, Sheridan P and Suzuki C 2017 J. Phys. B: At. Mol. Opt. Phys. 50 065006
[10] Aggarwal S 2014 Chin. Phys. B 23 093203
[11] Wu T, Higashiguchi T, Li B, Arai G, Hara H, Kondo Y, Miyazaki T, Dinh T H, Dunne P, O'Reilly F and Sokell E 2016 J. Phys. B: At. Mol. Opt. Phys. 49 035001
[12] Shang X, Tian Y, Wang Q, Fan S, Bai W and Dai Z 2014 Mon. Not. R. Astron. Soc. 442 138
[13] Shang X, Wang Q, Tian Y, Wang C and Dai Z 2015 J. Phys. B: At. Mol. Opt. Phys. 48 085001
[14] Doron R, Fraenkel M, Mandelbaum P, Zigler A and Schwob J L 1998 Phys. Scr. 58 19
[15] Witthoeft M C, Bautista M A, Garcia J, Kallman T R, Mendoza C, Palmeri P and Quinet P 2011 Astrophys. J. Suppl. Ser. 196 7
[16] Ekberg J O, Feldman U and Reader J 1988 J. Opt. Soc. Am. B 5 1275
[17] Ekberg J O, Seely J F, Feldman U, Brown C M and Hulburt E O 1989 J. Opt. Soc. Am. B 6 1648
[18] Ralchenko Y, Draganic I N, Osin D, Gillaspy J D and Reader J 2011 Phys. Rev. A 83 032517
[19] Radtke R, Biedermann C, Mandelbaum P and Schwob J L 2007 J. Phys. Conf. Ser. 58 113
[20] Louzon E, Henis Z, Levi I, Hurvitz G, Ehrlich Y, Fraenkel M, Maman S and Mandelbaum P 2009 J. Opt. Soc. Am. B 26 959
[21] Brown G V, Hansen S B, Träbert E, Beiersdorfer P, Widmann K, Chen H, Chung H K, Clementson J H T and Gu M F 2008 Phys. Rev. E 77 066406
[22] Zhao Z L, Wang K, Li S, Si R, Chen C Y, Chen Z B, Yan J and Ralchenko Y 2018 At. Data Nucl. Data Tables 119 314
[23] Quinet P 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195007
[24] Clementson J, Beiersdorfer P, Brage T and Gu M F 2014 At. Data Nucl. Data Tables 100 577
[25] Wang K, Zhang C Y, Si R, Li S, Chen Z B, Zhao X H, Chen C Y and Yan J 2018 At. Data Nucl. Data Tables 123-124 114
[26] Chen Z B, Ma K, Wang H J, Wang K, Liu X B and Zeng J L 2017 At. Data Nucl. Data Tables 113 258
[27] Radžiūtė L, Gaigalas G, Kato D, Rynkun P and Tanaka M 2020 Astrophys. J. Suppl. Ser. 248 17
[28] Goyal A, Khatri I, Aggarwal S, Singh A K and Mohan M 2016 At. Data Nucl. Data Tables 107 406
[29] Podpaly Y A, Gillaspy J D, Reader J and Ralchenko Y 2014 J. Phys. B: At. Mol. Opt. Phys. 48 025002
[30] Li X F and Jiang G 2018 Chin. Phys. B 27 073101
[31] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules, Vol. 40 (New York: Springer) p. 384
[32] He X K, Liu J P, Zhang X, Shen Y and Zou H X 2018 Chin. Phys. B 27 083102
[33] Hao L H and Kang X P 2014 Eur. Phys. J. D 68 1
[34] Hu F 2021 Radiat. Phys. Chem. 108 109293
[35] Hao L H, Jiang G, Song S and Hu F 2008 At. Data Nucl. Data Tables 94 739
[36] Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004
[37] Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597
[38] Li X F, Jia L P, Wang H B and Jiang G 2021 Chin. Phys. B 30 053102
[39] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197
[40] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184
[41] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
[42] Sturesson L, Jönsson P and Fischer C F 2007 Comput. Phys. Commun. 177 539
[43] Gaigalas G, žalandauskas T and Rudzikas Z 2003 At. Data Nucl. Data Tables 84 99
[44] Gaigalas G, Fischer C F, Rynkun P and Jönsson P 2017 Atoms 5 6
[45] Hao L H, Jiang G and Hou H J 2010 Phys. Rev. A 81 022502
[46] Olsen J, Godefroid M R, Jönsson P, Malmqvist P Å and Fischer C F 1995 Phys. Rev. E 52 4499
[47] Fischer C F 2009 Phys. Scr. T134 014019
[48] Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215
[49] Hao L, Jiang G, Hu F, Wang C K, Wang Z B and Yang J M 2013 Chin. Phys. B 22 073202
[50] Hu F, Sun Y, Mei M, Pan Y, Wu M and Liu H 2021 J. Quantum Spectrosc. Radiat. Transfer 273 107842
[51] Hao L H and Jiang G 2011 Phys. Rev. A 83 012511
[52] Ivanova E P and Tsirekidze M A 1986 Phys. Scr. 34 35
[53] Khatri I, Goyal A, Aggarwal S, Singh A K and Mohan M 2015 Chin. Phys. B 24 103202
[54] Wang H W, Zhang L, Jiang G, Li X F and Wang H B 2018 Indian J. Phys. 92 137
[55] Malyshev A V, Glazov D A, Kozhedub Y S, Anisimova I S, Kaygorodov M Y, Shabaev V M and Tupitsyn I I 2021 Phys. Rev. Lett. 126 183001
[56] Hu F, Yang J, Wang C, Jing L, Chen S, Jiang G and Hao L 2011 Phys. Rev. A 84 042506
[57] Sun L, Wu M and Jiang G 2019 Indian J. Phys. 94 1
[58] Jönsson P and Bieroń J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074023
[59] Wang K, Chen Z B, Zhao X H, Chen C Y and Yan J 2019 J. Quantum Spectrosc. Radiat. Transfer 237 106640
[60] Wang K, Zhang X H, Zhang C Y, Dang W, Zhao X H, Chen Z B, Si R, Chen C Y and Yan J 2021 J. Quantum Spectrosc. Radiat. Transfer 261 107512
[61] Atalay B, Brage T, Jönsson P and Hartman H 2019 Astron. Astrophys. 631 A29
[62] Li W, Hartman H, Wang K and Jönsson P 2020 Astron. Astrophys. 643 A156
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] Transition parameters of Li-like ions (Z=7-11) in dense plasmas
Xiang-Fu Li(李向富), Li-Ping Jia(贾利平), Hong-Bin Wang(王宏斌), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(5): 053102.
[3] Relativistic calculations of fine-structure energy levels of He-like Ar in dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚). Chin. Phys. B, 2018, 27(7): 073101.
[4] Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs
Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良). Chin. Phys. B, 2018, 27(2): 027103.
[5] Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII
R T Nazir, M A Bari, M Bilal, S Sardar, M H Nasim, M Salahuddin. Chin. Phys. B, 2017, 26(2): 023102.
[6] Spatiotemporal propagation dynamics of intense optical pulses in loosely confined gas-filled hollow-core fibers
Rui-rui Zhao(赵睿睿), Ding Wang(王丁), Zhi-yuan Huang(黄志远), Yu-xin Leng(冷雨欣), Ru-xin Li(李儒新). Chin. Phys. B, 2017, 26(1): 014208.
[7] Comment on “Atomic structure calculations for F-like tungsten” by S. Aggarwal [Chin. Phys B 23 (2014) 093203]
Kanti M Aggarwal. Chin. Phys. B, 2016, 25(4): 043201.
[8] Extreme ultraviolet and soft x-ray spectral lines in Rb XXIX
Indu Khatri, Arun Goyal, Sunny Aggarwal, A K Singh, Man Mohan. Chin. Phys. B, 2016, 25(3): 033201.
[9] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[10] Comment on “Relativistic atomic data for W XLVII” by S. Aggarwal et al. [Chin. Phys. B 24 (2015) 053201]
Kanti M. Aggarwal. Chin. Phys. B, 2015, 24(12): 123201.
[11] Extreme ultraviolet and x-ray transition wavelengths in Rb XXIV
Indu Khatri, Arun Goyal, Sunny Aggarwal, A. K. Singh, Man Mohan. Chin. Phys. B, 2015, 24(10): 103202.
[12] Theoretical study on K, L, and M X-ray transition energies and rates of neptunium and its ions
Ismail Abdalla Saber, Dong Chen-Zhong (董晨钟), Wang Xiang-Li (王向丽), Zhou Wei-Dong (周卫东), Wu Zhong-Wen (武中文). Chin. Phys. B, 2014, 23(2): 023101.
[13] Influence of nanomechanical force on the electronic structure of InAs/GaAs quantum dots
Song Xin (宋鑫), Feng Hao (冯昊), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远). Chin. Phys. B, 2013, 22(4): 047305.
[14] Impact of GaNAs strain compensation layer on the electronic structure of InAs/GaAs quantum dots
Song Xin (宋鑫), Feng Hao (冯淏), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远), Liu Jian-Tao (刘建涛). Chin. Phys. B, 2013, 22(1): 017304.
[15] Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Shen Xiang-Wei (申向伟), Zhang Jin-Long (张锦龙), Zhou Gui-Yao (周桂耀), Li Shu-Guang (李曙光), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2011, 20(5): 054210.
No Suggested Reading articles found!