Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057802    DOI: 10.1088/1674-1056/ac3bac
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks

Bin Liu(刘彬)1,2, Ma-Long Hu(胡马龙)2, Yi-Wen Zhang(章艺文)2, Yue You(游悦)2, Zhao-Guo Liang(梁钊国)1, Xiao-Niu Peng(彭小牛)1,†, and Zhong-Jian Yang(杨中见)2,‡
1 Hubei Key Laboratory of Ferroelectric and Dielectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China;
2 Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  We theoretically study the near-field couplings of two stacked all-dielectric nanodisks, where each disk has an electric anapole mode consisting of an electric dipole mode and an electric toroidal dipole (ETD) mode. Strong bonding and anti-bonding hybridizations of the ETD modes of the two disks occur. The bonding hybridized ETD can interfere with the dimer's electric dipole mode and induce a new electric anapole mode. The anti-bonding hybridization of the ETD modes can induce a magnetic toroidal dipole (MTD) response in the disk dimer. The MTD and magnetic dipole resonances of the dimer form a magnetic anapole mode. Thus, two dips associated with the hybridized modes appear on the scattering spectrum of the dimer. Furthermore, the MTD mode is also accompanied by an electric toroidal quadrupole mode. The hybridizations of the ETD and the induced higher-order modes can be adjusted by varying the geometries of the disks. The strong anapole mode couplings and the corresponding rich higher-order mode responses in simple all-dielectric nanostructures can provide new opportunities for nanoscale optical manipulations.
Keywords:  all-dielectric nanodisks      anapole      electric toroidal dipole      magnetic toroidal dipole  
Received:  29 September 2021      Revised:  15 November 2021      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  42.25.Fx (Diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11704416 and 11704107),the Hunan Provincial Natural Science Foundation of China (Grant No.2021JJ20076),and the Hubei Provincial Natural Science Foundation of China (Grant No.2020CFB557).
Corresponding Authors:  Xiao-Niu Peng,E-mail:pengxn@hubu.edu.cn;Zhong-Jian Yang,E-mail:zjyang@csu.edu.cn     E-mail:  pengxn@hubu.edu.cn;zjyang@csu.edu.cn
About author:  2021-11-20

Cite this article: 

Bin Liu(刘彬), Ma-Long Hu(胡马龙), Yi-Wen Zhang(章艺文), Yue You(游悦), Zhao-Guo Liang(梁钊国), Xiao-Niu Peng(彭小牛), and Zhong-Jian Yang(杨中见) Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks 2022 Chin. Phys. B 31 057802

[1] Genevet P, Capasso F, Aieta F, Khorasaninejad M and Devlin R 2017 Optica 4 139
[2] Khorasaninejad M and Capasso F 2017 Science 358 eaam8100
[3] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737
[4] Koshelev K, Kruk S, Melik-Gaykazyan E, Choi J H, Bogdanov A, Park H G and Kivshar Y 2020 Science 367 288
[5] Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402
[6] Caldarola M, Albella P, Cortes E, Rahmani M, Roschuk T, Grinblat G, Oulton R F, Bragas A V and Maier S A 2015 Nat. Commun. 6 7915
[7] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
[8] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S and Luk'yanchuk B 2016 Science 354 aag2472
[9] Yang Z J, Jiang R B, Zhuo X L, Xie Y M, Wang J F and Lin H Q 2017 Phys. Rep. 701 1
[10] Zywietz U, Schmidt M K, Evlyukhin A B, Reinhardt C, Aizpurua J and Chichkov B N 2015 ACS Photon. 2 913
[11] Miroshnichenko A E and Kivshar Y S 2012 Nano Lett. 12 6459
[12] Yan J H, Liu P, Lin Z Y, Wang H, Chen H J, Wang C X and Yang G W 2015 ACS Nano 9 2968
[13] Cai D J, Huang Y H, Wang W J, Ji W B, Chen J D, Chen Z H and Liu S D 2015 J. Phys. Chem. C 119 4252
[14] Baryshnikova K V, Smirnova D A, Luk'yanchuk B S and Kivshar Y S 2019 Adv. Opt. Mater. 7 1801350
[15] Miroshnichenko A E, Evlyukhin A B, Yu Y F, Bakker R M, Chipouline A, Kuznetsov A I, Luk'yanchuk B, Chichkov B N and Kivshar Y S 2015 Nat. Commun. 6 8069
[16] Koshelev K, Favraud G, Bogdanov A, Kivshar Y and Fratalocchi A 2019 Nanophotonics 8 725
[17] Yang Y Q and Bozhevolnyi S I 2019 Nanotechnology 30 204001
[18] Zanganeh E, Evlyukhin A, Miroshnichenko A, Song M, Nenasheva E and Kapitanova P 2021 Phys. Rev. Lett. 127 096804
[19] Alaee R, Rockstuhl C and Fernandez-Corbaton I 2017 Opt. Commun. 407 17
[20] Gurvitz E A, Ladutenko K S, Dergachev P A, Evlyukhin A B, Miroshnichenko A E and Shalin A S 2019 Laser Photon. Rev. 13 1800266
[21] Deng Y H, Yang Z J, Hu M L, Du X J and He J 2021 New J. Phys. 23 023004
[22] Yang Y Q, Zenin V A and Bozhevolnyi S I 2018 ACS Photon. 5 1960
[23] Zhang Wu F, Li Q, Feng Q, Wu Y and Wu L 2020 Opt. Express 28 570
[24] Baryshnikova K, Filonov D, Simovski C, Evlyukhin A, Kadochkin A, Nenasheva E, Ginzburg P and Shalin A S 2018 Phys. Rev. B 98 165419
[25] Sabri L, Huan Q L, Liu N and Cunningham B 2019 Opt. Express 27 7196
[26] Shibanuma T, Grinblat G, Albella P and Maier S A 2017 Nano Lett. 17 2647
[27] Grinblat G, Li Y, Nielsen M P, Oulton R F and Maier S A 2017 ACS Photon. 4 2144
[28] Grinblat G, Li Y, Nielsen M P, Oulton R F and Maier S A 2016 Nano Lett. 16 4635
[29] Xu L, Rahmani M, Kamali K Z, Lamprianidis A, Ghirardini L, Sautter J, Camacho-Morales R, Chen H T, Parry M, Staude I, Zhang G Q, Neshev D and Miroshnichenko A E 2018 Light Sci. Appl. 7 44
[30] Verre R, Baranov D G, Munkhbat B, Cuadra J, Kall M and Shegai T 2019 Nat. Nanotechnol. 14 679
[31] Liu S D, Fan J L, Wang W J, Chen J D and Chen Z H 2018 ACS Photon. 5 1628
[32] Du K, Li P, Gao K, Wang H, Yang Z Q, Zhang W D, Xiao F J, Chua S J and Mei T 2019 J. Phys. Chem. Lett. 10 4699
[33] Thakkar N, Rea M T, Smith K C, Heylman K D, Quillin S C, Knapper K A, Horak E H, Masiello D J and Goldsmith R H 2017 Nano Lett. 17 6927)
[34] Liu J N, Huang Q L, Liu K K, Singamaneni S and Cunningham B T 2017 Nano Lett. 17 7569
[35] Wu P C, Liao C Y, Savinov V, Chung T L, Chen W T, Huang Y W, Wu P R, Chen Y H, Liu A Q, Zheludev N I and Tsai D P 2018 ACS Nano 12 1920
[36] Luk'yanchuk B, Paniagua-Dominguez R, Kuznetsov A I, Miroshnichenko A E and Kivshar Y S 2017 Phys. Rev. A 95 063820
[37] Li S Q and Crozier K B 2018 Phys. Rev. B 95 245423
[38] Yang Z J, Deng Y H, Yu Y and He J 2020 Nanoscale 12 10639
[39] Palik E D 1985 Handbook of Optical Constants of Solids (New York: Palik) pp. 547-570
[40] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[1] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[2] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[3] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[4] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[5] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[6] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[7] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[8] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[9] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[10] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[11] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[12] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[13] Intrinsic luminescence from metal nanostructures and its applications
Weidong Zhang(张威东), Te Wen(温特), Yuqing Cheng(程宇清), Jingyi Zhao(赵静怡), Qihuang Gong(龚旗煌), Guowei Lü(吕国伟). Chin. Phys. B, 2018, 27(9): 097302.
[14] Hot spots enriched plasmonic nanostructure-induced random lasing of quantum dots thin film
Feng Shan(单锋), Xiao-Yang Zhang(张晓阳), Jing-Yuan Wu(吴静远), Tong Zhang(张彤). Chin. Phys. B, 2018, 27(4): 047804.
[15] Spectral redshift of high-order harmonics by adding a weak pulse in the falling part of the trapezoidal laser pulse
Xue-Fei Pan(潘雪飞), Jun Zhang(张军), Shuai Ben(贲帅), Tong-Tong Xu(徐彤彤), Xue-Shen Liu(刘学深). Chin. Phys. B, 2018, 27(2): 024206.
No Suggested Reading articles found!