Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044303    DOI: 10.1088/1674-1056/ac1e18

Effect of nonlinear translations on the pulsation of cavitation bubbles

Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨)
Key Laboratory of Modern Acoustics(Ministry of Education), Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  The pulsations and translations of cavitation bubbles obey combined ordinary differential equations, and their nonlinearities are studied by the bifurcation diagram and the phase diagram in a strong ultrasonic field. Bubble pulsation can change regularly or irregularly with changing driving pressure in the time domain. The bifurcation diagrams of the pulsation versus driving pressure show that the pulsations and translations of bubbles have nonlinear characteristics, and the nonlinear translations of bubbles can disorder the pulsations for certain parameters. Disorder of the pulsation can also be caused by nonlinear pulsation itself. In addition, the phase diagrams also show that the nonlinear translations make a large contribution to the pulsations. The same result can also be obtained when the ambient radii of two bubbles are different.
Keywords:  bubble pulsation      bubble translation      nonlinear characteristics  
Received:  21 June 2021      Revised:  05 August 2021      Accepted manuscript online:  17 August 2021
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  47.55.dp (Cavitation and boiling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074185).
Corresponding Authors:  Weizhong Chen     E-mail:

Cite this article: 

Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨) Effect of nonlinear translations on the pulsation of cavitation bubbles 2022 Chin. Phys. B 31 044303

[1] Leighton T G 1997 The Acoustic Bubble (San Diego:Academic Press)
[2] Plesset M S and Prosperetti A 1977 Annu. Rev. Fluid Mech. 9 145
[3] Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[4] Huang W, Chen W Z, Liu Y and Gao X X 2006 Ultrasonics 44 e407
[5] Chen Q D and Wang L 2004 Chin. Phys. Lett. 21 1822
[6] Behnia S, Sojahrood A J, Soltanpoor W and Sarkhosh L 2009 Ultrasonics 49 605
[7] Gou X F, Zhu L Y and Chen D L 2015 Nonlinear Dyn. 79 2225
[8] Varga R and Hegeus H 2016 Nonlinear Dyn. 86 1239
[9] Liang J F, An Y and Chen W Z 2019 Chin. Phys. Lett. 36 107801
[10] Sojahrood A J, Earl R, Li Q, Porter T M and Karshafian R 2021 Nonlinear Dyn. 103 429
[11] Macdonald C A, Sboros V, Retkute R, Gomatam J and Mcdicken W N 2002 Mathematical Communications 15 503
[12] Behnia S, Zahir H, Yahyavi M, Barzegar A and Mobadersani F 2013 Nonlinear Dyn. 72 561
[13] Kenfack A 2003 Chaos, Solitons & Fractals 15 205
[14] Takahira H, Yamane S and Akamatsu T 1995 JSME International Journal Series B Fluids and Thermal Engineering 3 432
[15] Sugita N and Sugiura T 2017 Ultrasonics 74 174
[16] Parlitz U, Englisch V, Scheffczyk C and Lauterborn W 1998 J. Acoust. Soc. Am. 88 1061
[17] Zhang LL, Chen W Z, Zhang Y Y, Wu Y Y and Wang X 2020 Chin. Phys. B 29 034303
[18] Doinikov A A 2001 Phys. Rev. E 64 026301
[19] Doinikov A A 2015 Phys. Rev. E 92 043001
[20] Levich B V 1962 Physicochemical Hydrodynamics (Englewood Cliffs:Prentice-Hall)
[21] Brujan E A 1994 J. Sound Vib. 173 329
[22] Ceb-Terrab E S and de Oliveira H P 1996 Comput. Phys. Commun. 95 171
[1] Bubble acoustical scattering cross section under multi-frequency acoustic excitation
Jie Shi(时洁), De-sen Yang(杨德森), Hao-yang Zhang(张昊阳), Sheng-guo Shi(时胜国), Song Li(李松), Bo Hu(胡博). Chin. Phys. B, 2017, 26(7): 074301.
[2] Roles of voltage in semi-insulating GaAs photoconductive semiconductor switch
Hai-Juan Cui(崔海娟), Hong-Chun Yang(杨宏春), Jun Xu(徐军), Yu-Ming Yang(杨宇明), Zi-Xian Yang(杨子贤). Chin. Phys. B, 2017, 26(1): 017804.
No Suggested Reading articles found!