Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127302    DOI: 10.1088/1674-1056/ac05ad
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures

Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜)
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  The anisotropic magnetoresistances (AMRs) in single crystalline Co(6 nm)/SrTiO3(001) heterostructures from 5 K to 300 K with the current direction setting along either Co[100] or Co[110] are investigated in this work. The anomalous (normal) AMR is observed below (above) 100 K. With the current along Co[100] direction, the AMR shows negative longitudinal and positive transverse magnetoresistances at T< 100 K, while the AMR is inverse with the current along Co[110]. Meanwhile, the amplitude ratio between Co[110] and Co[100] is observed to be as large as 29 at 100 K. A crystal symmetry-adapted model of AMR demonstrates that interplay between the non-crystalline component and crossed AMR component results in the anomalous AMR. Our results may reveal more intriguing magneto-transport behaviors of film on SrTiO3 or other perovskite oxides.
Keywords:  single crystalline      anisotropic magnetoresistance      heterostructure  
Received:  03 March 2021      Revised:  29 April 2021      Accepted manuscript online:  27 May 2021
PACS:  73.43.Qt (Magnetoresistance)  
  73.50.-h (Electronic transport phenomena in thin films)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174163 and 91963201), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT-16R35), and the 111 Project, China (Grant No. B20063).
Corresponding Authors:  De-Sheng Xue     E-mail:  xueds@lzu.edu.cn

Cite this article: 

Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜) Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures 2021 Chin. Phys. B 30 127302

[1] Thomson W 1857 Proc. R. Soc. 546
[2] McGuire T and Potter R 1975 IEEE Trans. Magn. 11 1018
[3] Li J, Jin E, Son H, Tan A, Cao W N, Hwang C and Qiu Z Q 2012 Rev. Sci. Instrum. 83 033906
[4] Campbell I A, Fert A and Jaoul O 1970 J. Magn. Magn. Mater. 3 S95
[5] Smit J 1951 Physica 17 612
[6] Berger L 1963 J. Appl. Phys. 34 1360
[7] Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[8] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2005 Nat. Mater. 3 868
[9] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B 87 144411
[10] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[11] Miao B F, Huang S Y, Qu D and Chien C L 2014 Phys. Rev. Lett. 112 236601
[12] Kim J, Sheng P, Takahashi S, Mitani S and Hayashi M 2016 Phys. Rev. Lett. 116 097201
[13] Avci C O, Garello K, Ghosh A, Gabureac M, Alvarado S F and Gambardella P 2015 Nat. Phys. 11 570
[14] Vélez S, Golovach V N, Bedoya-Pinto A, Isasa M, Sagasta E, Abadia M, Rogero C, Hueso L E, Bergeret F S and Casanova F 2016 Phys. Rev. Lett. 116 016603
[15] Kobs A, Heße S, Kreuzpaintner W, Winkler G, Lott D, Weinberger P, Schreyer A and Oepen H P 2011 Phys. Rev. Lett. 106 217207
[16] Kobs A, Heße S, Oepen H and Weinberger P 2012 Philos. Mag. 92 2835
[17] Kobs A, Frauen A and Oepen H P 2014 Phys. Rev. B 90 016401
[18] Nakayama H, Kanno Y, An H, Tashiro T, Haku S, Nomura A and Ando K 2016 Phys. Rev. Lett. 117 116602
[19] Zhou L, Song H, Liu K et al. 2018 Sci. Adv. 4 eaao3318
[20] Narayanapillai K, Go G, Ramaswamy R, Gopinadhan K, Go D, Lee H W, Venkatesan T, Lee K J and Yang H 2017 Phys. Rev. B 96 064401
[21] Annadi A, Huang Z, Gopinadhan K, Wang X R, Srivastava A, Liu Z Q, Ma H H, Sarkar T P, Venkatesan T and Ariando 2013 Phys. Rev. B 87 201102
[22] Ma H J H, Zhou J, Yang M, Liu Y, Zeng S W, Zhou W X, Zhang L C, Venkatesan T, Feng Y P and Ariando 2017 Phys. Rev. B 95 155314
[23] Ben Shalom M, Tai C W, Lereah Y, Sachs M, Levy E, Rakhmilevitch D, Palevski A and Dagan Y 2009 Phys. Rev. B 80 140403
[24] Flekser E, Ben Shalom M, Kim M, Bell C, Hikita Y, Hwang H Y and Dagan Y 2012 Phys. Rev. B 86 121104
[25] Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D and Zhao W 2019 Phys. Rev. Appl. 12 034004
[26] Rödel T C, Fortuna F, Sengupta S, Frantzeskakis E, Févre P L, Bertran F, Mercey B, Matzen S, Agnus G, Maroutian T, Lecoeur P and Santander-Syro A F 2016 Adv. Mater. 28 1976
[27] D C Vaz P Noël A J B G F Y B G S S M W F T L M V A and A Sander N M 2019 Nat. Mater. 18 1976
[28] Nikolaev K R, Krivorotov I N, Dahlberg E D, Vas'ko V A, Urazhdin S, Loloee R and Pratt W P 2003 Appl. Phys. Lett. 82 4534
[29] Tsunoda M, Komasaki Y, Kokado S, Isogami S, Chen C C and Takahashi M 2009 Appl. Phys. Express 2 083001
[30] Xiao X, Liang J H, Chen B L, Li J X, Ma D H, Ding Z and Wu Y Z 2015 J. Appl. Phys. 118 043908
[31] Xiao X, Li J X, Ding Z and Wu Y Z 2015 J. Appl. Phys. 118 203905
[32] Hupfauer T, Matos-Abiague A, Gmitra M, Schiller F, Loher J, Bougeard D, Back C H, Fabian J and Weiss D 2015 Nat. Commun. 6
[33] Zeng F L, Zhou C, Jia M W, Shi D and Wu Y Z 2019 J. Magn. Magn. Mater. 499 166204
[34] Zeng F L, Ren Z Y, Li Y, Zeng J Y, Jia M W, Miao J, Hoffmann A, Zhang W, Wu Y Z and Yuan Z 2020 Phys. Rev. Lett. 125 097201
[35] Rushforth A W, Výborný K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Vaek P, Novák V, Olejník K, Sinova J, Jungwirth T and Gallagher B L 2007 Phys. Rev. Lett. 99 147207
[36] Rushforth A W, Výborný K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Novák V and Olejník K 2009 J. Magn. Magn. Mater. 321 1001
[37] Howells B, Wang M, Edmonds K W, Wadley P, Campion R P, Rushforth A W, Foxon C T and Gallagher B L 2013 Appl. Phys. Lett. 102 052407
[38] Ranieri E D, Rushforth A W, Výborný K, Rana U, Ahmad E, Campion R P, Foxon C T, Gallagher B L, Irvine A C, Wunderlich J and Jungwirth T 2008 New J. Appl. Phys. 10 065003
[39] Yang F J, Sakuraba Y, Kokado S, Kota Y, Sakuma A and Takanashi K 2012 Phys. Rev. B 86 020409
[40] Kokado S, Tsunoda M, Harigaya K and Sakuma A 2012 J. Phys. Soc. Jpn. 81 024705
[41] Yabuhara O, Nukaga Y, Ohtake M, Kirino F and Futamoto M 2010 J. Magn. Soc. Jpn. 34 78
[42] Kittel C 1996 Introduction to Solid State Physics (Wiley)
[43] Lee A J, Brangham J T, Cheng Y, White S P, Ruane W T, Esser B D, McComb D W, Hammel P C and Yang F Y 2017 Nat. Commun. 8 234
[44] Raquet B, Viret M, Sondergard E, Cespedes O and Mamy R 2002 Phys. Rev. B 66 024433
[45] Freitas P, Gomes A, McGuire T and Plaskett T 1990 J. Magn. Magn. Mater. 83 113
[46] Gil W, Görlitz D, Horisberger M and Kötzler J 2005 Phys. Rev. B 72 134401
[47] Epshtein E M, Krikunov A I and F Y 2003 J. Magn. Magn. Mater. 258-259 80
[48] Lima S C and Baibich M N 2016 J. Appl. Phys. 119 033902
[49] Birss R R et al. 1964 Symmetry and Magnetism, Vol. 863 (North-Holland Amsterdam)
[50] Döring W 1938 Ann. Phys. 424 259
[51] Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett. 98 262506
[52] Miao Y, Chen X, Yang S, Zheng K, Lian Z, Wang Y, Wang P, Gao C, Yang D Z and Xue D S 2020 J. Magn. Magn. Mater. 512 167013
[53] Qeemat G, He W, Li Y, Sun R, Li N, Yang X, Li Y, Gong Z Z, Xie Z, Zhang X, Cheng Z H 2018 Chin. Phys. B 27 097504
[54] Syed S A, He W, Tang J, Zhang S, Hu B, Ye J, Gul Q, Zhang X and Cheng Z H 2016 Chin. Phys. B 25 097501
[55] Cao W N, Li J, Chen G, Zhu J, Hu C R and Wu Y Z 2011 Appl. Phys. Lett. 98 1413
[1] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[2] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[9] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[12] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[15] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
No Suggested Reading articles found!