Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124201    DOI: 10.1088/1674-1056/abff3e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium

Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军)
International Research Center of Quantum Information and Photoelectric Information, School of Mechanical and Electronic Engineering, Chizhou University, Chizhou 247000, China
Abstract  We theoretically study the stationary entanglement of two charged nanomechanical oscillators coupling via Coulomb interaction in an optomechanical system with an additional Kerr medium. We show that the degree of entanglement between two nanomechanical oscillators is suppressed by Kerr interaction due to photon blockade and enhanced by Coulomb coupling strength. We also show other parameters for adjusting and obtaining entanglement, such as the driving power and the frequencies of the two oscillators, and the entanglement is robust against temperature. Our study proves a way for adjusting stationary entanglement between two optomechanical oscillators by Coulomb interaction and Kerr medium.
Keywords:  entanglement      Kerr interaction      Coulomb interaction      optomechanics  
Received:  14 March 2021      Revised:  24 April 2021      Accepted manuscript online:  10 May 2021
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704051).
Corresponding Authors:  Ye-Jun Xu     E-mail:  yejunxu@126.com

Cite this article: 

Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军) Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium 2021 Chin. Phys. B 30 124201

[1] Heilmann R, Gräfe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
[2] Wu Y L, Li S J, Ge W, Xu Z X, Tian L and Wang H 2015 Sci. Bull. 61 302
[3] Xu X X 2015 Phys. Rev. A 92 012318
[4] Yu Y B, Ji F M, Shi Z T, Wang H J, Zhao J W and Wang Y J 2017 Laser Phys. Lett. 14 035202
[5] Wang C, Shen W W, Mi S C, Zhang Y and Wang T J 2015 Sci. Bull. 60 2016
[6] Zhang X, Chen Y H, Wu Q C, Shi Z C, Song J and Xia Y 2017 Laser Phys. 27 015202
[7] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641
[8] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[9] Leggett A J 1980 Prog. Theor. Phys. 69 80
[10] Zurek W H 1991 Phys. Today 44 36
[11] Du S J, Peng Y G, Feng H R, Han F, Yang L W and Zheng Y J 2020 Chin. Phys. B 29 074202
[12] Kimble H J 2008 Nature 453 1023
[13] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[14] Liu J H, Zhang Y B, Yu Y F and Zhang Z M 2019 Front. Phys. 14 12601
[15] Tan J and Fang M F 2006 Chin. Phys. 15 2514
[16] Li H M, Xu X X, Yuan H C and Meng X G 2019 Laser Phys. Lett. 16 105202
[17] Zhang G F, Yin W, Liang J Q and Yan Q W 2004 Chin. Phys. 13 988
[18] Yuan H C, Wang Z, Chen Q M and Dou X M 2015 Mod. Phys. Lett. A 30 1550109
[19] Liao Q H and He G Q 2020 Quantum Inf. Process 19 91
[20] Ke Z J, Wang Y T, Yu S, Liu W, Meng Y, Li Z P, Wang H, Li Q, Xu J S, Xiao Y, Tang J S, Li C F and Guo G C 2020 Chin. Phys. B 29 080301
[21] Li X M, Chen Y X, Xia Y J, Zhang Q and Man Z X 2020 Chin. Phys. B 29 060302
[22] Marshall W, Simon C, Penrose R and Bouwmeester D 2003 Phys. Rev. Lett. 91 159903
[23] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[24] Zheng L L, Yin T S, Bin Q, Lü X Y and Wu Y 2019 Phys. Rev. A 99 013804
[25] Schwab K C and Roukes M L 2005 Phys. Today 58 36
[26] Kippenberg T J and Vahala K J 2008 Science 321 1172
[27] Marquardt F and Girvin S M 2009 Physics 2 40
[28] Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602
[29] Mahajan S, Kumar T, Bhattacherjee A B and ManMohan 2013 Phys. Rev. A 87 013621
[30] Xiong H, Gan J H and Wu Y 2017 Phys. Rev. Lett. 119 153901
[31] Teufel J D, Donner T, Castellanos-Beltran M A, Harlow J W and Lehnert K W 2009 Nat. Nanotechnol. 4 820
[32] Wilson D J, Regal C A, Papp S B and Kimble H J 2009 Phys. Rev. Lett. 103 207204
[33] Liao Q H, Xiao X, Nie W J and Zhou N R 2020 Opt. Express 28 4
[34] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[35] Sohail A, Rana M, Ikram S, Munir T, Hussain T, Ahmed R and Yu C S 2020 Quantum Inf. Process 19 372
[36] Craddock A N, Hannegan J, Ornelas-Huerta D P, Siverns J D, Hachtel A J, Goldschmidt E A, Porto J V, Quraishi Q and Rolston S L 2019 Phys. Rev. Lett. 123 213601
[37] Zou F, Lai D G and Liao J Q 2020 Opt. Express 28 16175
[38] Liew T C H and Savona V 2010 Phys. Rev. Lett. 104 183601
[39] Lü X Y, Zhang W M, Sahel Ashhab, Wu Y and Franco Nori 2013 Sci. Rep. 3 2943
[40] Mikkelsen M, Fogarty T, Twamley J and Busch Th 2017 Phys. Rev. A 96 043832
[41] Wang K, Wu Q, Yu Y F and Zhang Z M 2019 Phys. Rev. A 100 053832
[42] Kumar T, Bhattacheriee A B and ManMohan 2010 Phys. Rev. A 81 013835
[43] Bin Q, Lü X Y, Bin S W and Wu Y 2018 Phys. Rev. A 98 043858
[44] Chen W J, Song D, Li Y, Wang X, Qin X L and Liu C Y 2019 Acta Phys. Sin. 68 094206 (in Chinese)
[45] Zhang D, Zhang X P and Zheng Q 2013 Chin. Phys. B 22 064206
[46] Zhou L, Han Y, Jing J T and Zhang W P 2011 Phys. Rev. A 83 052117
[47] Zhang D and Zheng Q 2013 Chin. Phys. Lett. 30 024213
[48] Löw U, Emery V J and Fabricius K 1994 Phys. Rev. Lett. 72 1918
[49] Bohm D and Pines D 1953 Phys. Rev. 92 609
[50] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[51] Wu Q, Xiao Y and Zhang Z M 2016 Chin. Phys. B 25 014203
[52] Imamoglu A, Schmidt H, Woods G and Deutsch M 1997 Phys. Rev. Lett. 79 1467
[53] Mu Q X and Lin P Y 2020 Chin. Phys. B 29 060304
[54] Mancini S and Tombesi P 1994 Phys. Rev. A 49 4055
[55] Zhang L W, Li X L and Yang L 2019 Acta Phys. Sin. 68 170701
[56] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
[57] Xiao Y M, Liu J H, Wu Q, Yu Y F and Zhang Z M 2020 Chin. Phys. B 29 074204
[58] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[59] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[60] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[61] Simon R 2000 Phys. Rev. Lett. 84 2726
[62] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[63] Schliesser A, Riviere R, Anetsberger G, Arcizet O and Kippenberg T J 2008 Nat. Phys. 4 415
[64] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67
[65] Wang Z, Jiang C, He Y, Wang C Y and Li H M 2020 Nature 37 579
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[11] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[14] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[15] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
No Suggested Reading articles found!