Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117504    DOI: 10.1088/1674-1056/ac229a
RAPID COMMUNICATION Prev   Next  

Realizing Majorana fermion modes in the Kitaev model

Lu Yang(杨露)1, Jia-Xing Zhang(张佳星)1, Shuang Liang(梁爽)3, Wei Chen(陈薇)1,2,†, and Qiang-Hua Wang(王强华)1,2
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We study the possibility to realize a Majorana zero mode that is robust and may be easily manipulated for braiding in quantum computing in the ground state of the Kitaev model in this work. To achieve this we first apply a uniform [111] magnetic field to the gapless Kitaev model and turn the Kitaev model to an effective p+ip topological superconductor of spinons. We then study possible vortex binding in such system to a topologically trivial spot in the ground state. We consider two cases in the system: one is a vacancy and the other is a fully polarized spin. We show that in both cases, the system binds a vortex with the defect and a robust Majorana zero mode in the ground state at a weak uniform [111] magnetic field. The distribution and asymptotic behavior of these Majorana zero modes are studied. The Majorana zero modes in both cases decay exponentially in space, and are robust against local perturbations and other Majorana zero modes far away, which makes them promising candidates for braiding in topological quantum computing.
Keywords:  Kitaev model      Majorana fermion modes      topological quantum computing  
Received:  16 July 2021      Revised:  24 August 2021      Accepted manuscript online:  01 September 2021
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  75.10.Hk (Classical spin models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974166 and 11574134).
Corresponding Authors:  Wei Chen     E-mail:  chenweiphy@nju.edu.cn

Cite this article: 

Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华) Realizing Majorana fermion modes in the Kitaev model 2021 Chin. Phys. B 30 117504

[1] Read N and Green D 2000 Phys. Rev. B 61 10267
[2] Kitaev A Yu 2001 Phys. Usp. 44 131
[3] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[4] Jeon S, Xie Y, Li J, Wang Z, Bernevig B A and Yazdani A 2017 Science 358 772
[5] Zhang H, Liu D E, Wimmer M and Kouwenhoven L P 2019 Nat. Commun. 10 5128
[6] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[7] Moore G and Read N 1991 Nucl. Phys. B 360 362
[8] Silaev M A and Volovik G E 2010 J. Low Temp. Phys. 161 460
[9] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[10] Sau J D and Das Sarma S 2012 Nat. Commun. 3 964
[11] Choy T P, Edge J M, Akhmerov A R and Beenakker C W J 2011 Phys. Rev. B 84 195442
[12] Nadj-Perge S, Drozdov I K, Bernevig B A and Yazdani A 2013 Phys. Rev. B 88 020407(R)
[13] Rice T M and Sigrist M 1995 J. Phys: Condens. Matter 7 L643
[14] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[15] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[16] Kitaev A 2006 Ann. Phys. 321 2
[17] Feng X S, Zhang G M and Xiang T 2007 Phys. Rev. Lett. 98 087204
[18] Motome Y and Nasu J 2020 J Phys. Soc. Jpn. 89 012002
[19] Willans A J, Chalker J T and Moessner R 2010 Phys. Rev. Lett. 104 237203
[20] Willans A J, Chalker J T and Moessner R 2011 Phys. Rev. B 84 115146
[21] Volovik G E 1999 JETP Lett. 70 609
[22] Lee D H, Zhang G M and Xiang T 2007 Phys. Rev. Lett. 99 196805
[23] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[24] Santhosh G, Sreenath V, Lakshminarayan A and Narayanan R 2012 Phys. Rev. B 85 054204
[25] Pereira V M, Guinea F, Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2006 Phys. Rev. Lett. 96 036801
[26] Jiang M H, Liang S, Chen W, Qi Y, Li J X and Wang Q H 2020 Phys. Rev. Lett. 125 177203)
[27] Liang S, He BS, Dong Z Y, Chen W, Li J X and Wang Q H 2018 Phys. Rev. B 98 104410
[28] Liang S, Jiang M H, Chen W, Li J X and Wang Q H 2018 Phys. Rev. B 98 054433
[29] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[30] November B H, Sau J D, Williams J R and Hoffman J E 2019 arXiv:1905.09792[cond-mat]
[31] The magnetization curve we obtained shows hysteresis when the local magnetic field is swept in the increase and decrease directions respectively. This also indicates that the phase transition at the polarization is first order.
[32] Otten D, Roy A and Hassler F 2019 Phys. Rev. B 99 035137
[33] Dhochak K, Shankar R and Tripathi V 2010 Phys. Rev. Lett. 105 117201
[34] Vojta M, Mitchell A K and Zschocke F 2016 Phys. Rev. Lett. 117 037202
[35] Das S D, Dhochak K and Tripathi V 2016 Phys. Rev. B 94 024411
[1] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[2] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
No Suggested Reading articles found!