Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100510    DOI: 10.1088/1674-1056/abfccf
GENERAL Prev   Next  

Collective motion of polar active particles on a sphere

Yi Chen(陈奕)1,2, Jun Huang(黄竣)1,2, Fan-Hua Meng(孟繁华)1,2, Teng-Chao Li(李腾超)1,2,†, and Bao-Quan Ai(艾保全)1,2,‡
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China;
2 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
Abstract  Collective motion of active particles with polar alignment is investigated on a sphere. We discussed the factors that affect particle swarm motion and define an order parameter that can show the degree of particle swarm motion. In the model, we added a polar alignment strength, along with Gaussian curvature, affecting particles swarm motion. We find that when the force exceeds a certain limit, the order parameter will decrease with the increase of the force. Combined with our definition of order parameter and observation of the model, the reason is that particles begin to move side by side under the influence of polar forces. In addition, the effects of velocity, rotational diffusion coefficient, and packing fraction on particle swarm motion are discussed. It is found that the rotational diffusion coefficient and the packing fraction have a great influence on the clustering motion of particles, while the velocity has little influence on the clustering motion of particles.
Keywords:  clustering motion of Brownian particles      polar active particles      sphere  
Received:  04 February 2021      Revised:  21 April 2021      Accepted manuscript online:  29 April 2021
PACS:  05.10.Gg (Stochastic analysis methods)  
  05.40.Jc (Brownian motion)  
  05.20.-y (Classical statistical mechanics)  
  05.60.-k (Transport processes)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 12075090 and 12005066), the Science and Technology Program of Guangzhou (Grant No. 2019050001), the Natural Science Foundation of Guangdong Province, China (Grant No. 2017A030313029), and the Major Basic Research Project of Guangdong Province, China (Grant No. 2017KZDXM024).
Corresponding Authors:  Teng-Chao Li, Bao-Quan Ai     E-mail:  tengchaoli@m.scnu.edu.cn;aibq@scnu.edu.cn

Cite this article: 

Yi Chen(陈奕), Jun Huang(黄竣), Fan-Hua Meng(孟繁华), Teng-Chao Li(李腾超), and Bao-Quan Ai(艾保全) Collective motion of polar active particles on a sphere 2021 Chin. Phys. B 30 100510

[1] Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F and Viale M 2010 Proc. Natl. Acad. Sci. USA 107 11865
[2] Tunstrom K, Katz Y, Ioannou C C, Huepe C, Lutz M J and Couzin I D 2013 PLoS Computational Biology 9
[3] Lushi E, Wioland H and Goldstein R E 2014 Proc. Natl. Acad. Sci. USA 111 9733
[4] Giomi L, Bowick M J, Ma X and Marchetti M C 2013 Phys. Rev. Lett. 110 228101
[5] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[6] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[7] Sanchez T, Chen D T, DeCamp S J, Heymann M and Dogic Z 2012 Nature 491 431
[8] Sknepnek R and Henkes S 2015 Phys. Rev. E 91 022306
[9] Bruss I R and Glotzer S C 2017 Soft Matter 13 5117
[10] Apaza L and Sandoval M 2017 Phys. Rev. E 96 022606
[11] Janssen L M C, Kaiser A and Löwen H 2017 Sci. Rep. 7 5667
[12] Fily Y, Baskaran A and Hagan M F 2017 Eur. Phys. J. E 40 61
[13] Cui R F, Chen Q H and Chen J X 2020 Nanoscale 12 12275
[14] Chen J X, Yuan R, Cui R and Qiao L Y 2021 Nanoscale 13 1055
[15] Chen J X, Chen Y G and Kapral R 2018 Adv. Sci. 5 1800028
[16] Shi X Q and Ma Y Q 2010 Proc. Natl. Acad. Sci. USA 107 11709
[17] Fily Y and Marchetti M C 2012 Phys. Rev. Lett. 108 235702
[18] Stenhammar J, Tiribocchi A, Allen R J, Marenduzzo D and Cates M E 2013 Phys. Rev. Lett. 111 145702
[19] Keber F C, Loiseau E, Sanchez T, DeCamp S J, Giomi L, Bowick M J, Marchetti M C, Dogic Z and Bausch A R 2014 Science 345 1135
[20] Alaimo F, Köhler C and Voigt A 2017 Sci. Rep. 7 5211
[21] Praetorius S, Voigt A, Wittkowski R and Löwen H 2018 Phys. Rev. E 97 052615
[22] Henkes S, Marchetti M C and Sknepnek R 2018 Phys. Rev. E 97 042605
[23] Ellis P W, Nayani K, McInerney J P, Rocklin D Z, Park J O, Srinivasarao M, Matsumoto E A and Fernandez-Nieves A 2018 Phys. Rev. Lett. 121 247803
[24] Shankar S, Ramaswamy S, Marchetti M C and Bowick M J 2018 Phys. Rev. Lett. 121 108002
[25] Norton M M, Baskaran A, Opathalage A, Langeslay B, Fraden S, Baskaran A and Hagan M F 2018 Phys. Rev. E 97 012702
[26] Ehrig S, Ferracci J, Weinkamer R and Dunlop J W C 2017 Phys. Rev. E 95 062609
[27] Shankar S, Bowick M J and Marchetti M C 2017 Phys. Rev. X 7 031039
[28] Mickelin O, Slomka J, Burns K J, Lecoanet D, Vasil G M, Faria L M and Dunkel J 2018 Phys. Rev. Lett. 120 164503
[29] Fonda P, Rinaldin M, Kraft D J and Giomi L 2018 Phys. Rev. E 98 032801
[30] Pearce D J G, Ellis P W, Fernandez-Nieves A and Giomi L 2019 Phys. Rev. Lett. 122 168002
[31] Castro-Villarreal P and Sevilla F J 2018 Phys. Rev. E 97 052605
[32] Giomi L 2015 Phys. Rev. X 5 031003
[33] Yan W and Brady J F 2018 Soft Matter 14 279
[34] Ai B Q, Zhu W J and Liao J J 2019 New J. Phys. 21 093041
[35] Leimkuhler B and Reich S 2004 Simulating Hamiltonian Dynamics (Cambridge: Cambridge University Press)
[36] Ellis P W, Nayani K, McInerney J P, Rocklin D Z, Park J O, Srinivasarao M, Matsumoto E A and Fernandez-Nieves A 2018 Phys. Rev. Lett. 121 247803
[1] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[2] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[3] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[4] Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 096104.
[5] Unstable mode of ion-acoustic waves with two temperature q-nonextensive distributed electrons
S Bukhari, Nadeem Hussain, and S Ali. Chin. Phys. B, 2021, 30(9): 095202.
[6] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[7] Majorana stellar representation for mixed-spin (s, 1/2) systems
Yu-Guo Su(苏玉国), Fei Yao(姚飞), Hong-Bin Liang(梁宏宾), Yan-Ming Che(车彦明), Li-Bin Fu(傅立斌), and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2021, 30(3): 030303.
[8] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[9] Effect of heating time on structural, morphology, optical, and photocatalytic properties of g-C3N4 nanosheets
Nguyen Manh Hung, Le Thi Mai Oanh, Lam Thi Hang, Pham Do Chung, Pham Thi Duyen, Dao Viet Thang, Nguyen Van Minh. Chin. Phys. B, 2020, 29(5): 057801.
[10] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[11] Internal and near-surface fields for a chiral sphere under arbitrary laser beam illumination
Bi-Da Su(苏必达), Ming-Jun Wang(王明军), Yue Peng(彭月), Su-Hui Yang(杨苏辉), Hua-Yong Zhang(张华永). Chin. Phys. B, 2019, 28(6): 064210.
[12] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[13] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[14] Controllable photon echo phase induced by modulated pulses and chirped beat detection
Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣). Chin. Phys. B, 2019, 28(2): 024207.
[15] Relativistic calculations of fine-structure energy levels of He-like Ar in dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚). Chin. Phys. B, 2018, 27(7): 073101.
No Suggested Reading articles found!