Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097204    DOI: 10.1088/1674-1056/abe9a9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure

Zheng Cao(曹正)1,†, Qing-Qiao Fu(傅晴俏)2,†, Hui Gu(顾辉)2, Zhen Tian(田震)1, Xinba Yaer(新巴雅尔)1, Juan-Juan Xing(邢娟娟)2,‡, Lei Miao(苗蕾)3, Xiao-Huan Wang(王晓欢)1, Hui-Min Liu(刘慧敏)1, and Jun Wang(王俊)1,§
1 Inner Mongolia Engineering Research Center of Multi-functioanl Copper Based Materials, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
2 School of Materials Science and Engineering, Materials Genome Institute, Shanghai University, Shanghai 200444, China;
3 School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  Strontium titanate (SrTiO3) is a thermoelectric material with large Seebeck coefficient that has potential applications in high-temperature power generators. To simultaneously achieve a low thermal conductivity and high electrical conductivity, polycrystalline SrTiO3 with a multi-scale architecture was designed by the co-doping with lanthanum, cerium, and niobium. High-quality nano-powders were synthesized via a hydrothermal method. Nano-inclusions and a nano/micro-sized second phase precipitated during sintering to form mosaic crystal-like and epitaxial-like structures, which decreased the thermal conductivity. Substituting trivalent Ce and/or La with divalent Sr and substituting pentavalent Nb with tetravalent Ti enhanced the electrical conductivity without decreasing the Seebeck coefficient. By optimizing the dopant type and ratio, a low thermal conductivity of 2.77 W·m-1·K-1 and high PF of 1.1 mW·m-1·K-2 at 1000 K were obtained in the sample co-doped with 5-mol% La, 5-mol% Ce, and 5-mol% Nb, which induced a large ZT of 0.38 at 1000 K.
Keywords:  strontium titanate      multiple-doping      multi-scale microstructure      nano-inclusions  
Received:  27 January 2021      Revised:  15 February 2021      Accepted manuscript online:  25 February 2021
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  77.84.Cg (PZT ceramics and other titanates)  
  81.20.-n  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51702168 and 51532006).
Corresponding Authors:  Juan-Juan Xing, Jun Wang     E-mail:  xingjuanjuan@shu.edu.cn;wangjun@imut.edu.cn

Cite this article: 

Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊) Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure 2021 Chin. Phys. B 30 097204

[1] Lu X, Jiang P and Bao X 2019 Nat. Commun. 10 138
[2] Okuda T, Nakanishi K, Miyasaka S and Tokura Y 2001 Phys. Rev. B 63 113104
[3] Tritt T M and Subramanian M A 2011 MRS Bull. 31 188
[4] Ohta H, Mizuno T, Zheng S, Kato T, Ikuhara Y, Abe K, Kumomi H, Nomura K and Hosono H 2012 Adv. Mater. 24 740
[5] Xiao Y and Zhao L D 2020 Science 367 1196
[6] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[7] Zhao W, Liu Z, Wei P, Zhang Q, Zhu W, Su X, Tang X, Yang J, Liu Y, Shi J, Chao Y, Lin S and Pei Y Z 2016 Nat. Nano 12 55
[8] Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki, Snyder G J, Yang R and Koumoto, K 2015 Nat. Mater. 14 622
[9] Zheng Y, Liu C, Miao L, Li C, Huang R, Gao J, Wang X, Chen J, Zhou Y and Nishibori E 2019 Nan. Energ. 59 311
[10] Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energ. Environ. Sci. 2 466
[11] Sales B C, Mandrus D and Williams R K 1996 Science 272 1325
[12] Gao J, Miao L, Liu C, Wang X, Peng Y, Wei X, Zhou J, Chen Y, Hashimoto R, Asaka T and Koumoto K 2017 J. Mate. Chem. A 5 24740
[13] Liu X and Padilla W J 2012 Energ. Environ. Sci. 5 7188
[14] Li F, Li J F, Zhao L D, Xiang K, Liu Y, Zhang B P, Lin Y H, Nan C W and Zhu H M 2012 Energ. Environ. Sci. 5 7188
[15] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H and Koumoto K 2007 Nat. Mater. 6 129
[16] Chen J, Chen H, Hao F, Ke X, Chen N, Yajima T, Jiang Y, Shi X, Zhou K, Döbeli M, Zhang, T, Ge B, Dong H, Zeng H, Wu W and Chen L 2017 ACS Energ. Lett. 2 915
[17] Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y and Wu Y 2015 J Mater. Chem. C 3 11406
[18] Muta H, Kurosaki K and Yamanaka S 2003 J. Alloy. Compd. 350 292
[19] Lu Z, Zhang H, Lei W, Sinclair D C and Reaney I M 2016 Chem. Mater. 28 925
[20] Srivastava D, Norman C, Azough F, Schäfer M C, Guilmeau E, Kepaptsoglou D, Ramasse Q M, Nicotra G and Freer R 2016 Physl. Chem. Chem. Phys. 18 26475
[21] Ohta S, Nomura T, Ohta H and Koumoto K 2005 J. Appl. Phys. 97 034106
[22] Abutaha A I, Kumar S R, Li K, Dehkordi A M, Tritt T M and Alshareef H N 2015 Chem. Mater. 27 2165
[23] Yu C, Scullin M L, Huijben M, Ramesh R and Majumdar A 2008 Appl. Phys. Lett. 92 191911
[24] Park K, Son J S, Woo S I, Shin K, Oh M W, Park S D and Hyeon T 2014 J. Mater. Chem. A 2 4217
[25] Wang N, Chen H, He H, Norimatsu W, Kusunoki M and Koumoto K 2013 Sci. Rep. 3 3449
[26] Wang J, Zhang B Y, Kang H J, Li Y, Yaer X, Li J F, Tan Q, Zhang S, Fan G H, Liu C Y, Miao L, Nan D, Wang T M and Zhao L D 2017 Nan. Energ. 35 387
[27] Yamanaka S, Kurosaki K, Maekawa T, Matsuda T, Kobayashi S I and Uno M 2005 J. Nucl. Mater. 344 61
[28] Liu C, Miao L, Hu D L, Huang R, Fisher C, Tanemura S and Gu H 2013 Phys. Rev. B 88 205201
[29] Zhao K, Zhu C, Qiu P, Blichfeld A B, Eikeland E, Ren D, Iversen B B, Xu F, Shi X and Chen L 2017 Nan. Energ. 42 43
[30] Yamasaka S, Nakamura Y, Ueda T, Takeuchi S and Sakai A 2015 Sci. Rep. 5 14490
[31] Mao J, Liu Z, Zhou J, Zhu H, Zhang Q, Chen G and Ren Z F 2018 Adv. Phys. 67 69
[32] Li Y, Hou Q Y, Wang X H, Kang H J, Yaer X, Li J B, Wang T M, Miao L and Wang J 2019 J. Mater. Chem. A 7 236
[33] Li J B, Wang J, Li J F, Li Y, Yang H, Yu H Y, Ma X B, Yaer X, Liu L and Miao L J 2018 Mater. Chem. C 6 7594
[34] Ohta S, Ohta H and Koumoto K 2006 J. Ceram. Soc. Jpn 114 102
[35] Harada S, Tanaka K and Inui H 2010 J. Appl. Phys. 108 083703
[36] Portehault D, Maneeratana V, Candolfi C, Oeschler N, Veremchuk I, Grin Y, Sanchez C and Antonietti M 2011 ACS Nano 5 9052
[37] Liu C, Miao L, Zhou J, Huang R, Fisher C A and Tanemura S 2013 J. Phys. Chem. C 117 11487
[38] He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C and Chen L U 2015 Adv. Mater. 27 3639
[39] Ohta S, Nomura T, Ohta H, Hirano M, Hosono H and Koumoto K 2005 Appl. Phys. Lett. 87 092108
[40] Huang J L, Yan P, Liu Y P, Xing J J, Gu H, Fan Y C and Jiang W 2020 Appl. Mater. Inter. 17 108
[41] Wang K X, Wang J, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J and Yaer X 2018 Chin. Phys. B 27 048401
[42] Yue L, Colin N, Deepanshu S, Feridoon A, Li W, Mark R, Kevin S, Robert F and Ian A K 2015 Appl. Mater. Inter. 58 136
[43] Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[1] Josephson effect in the strontium titanate/lanthanum aluminate junction
Xing Yang(阳星), Jie Chen(陈杰), Yabin Yu(余亚斌), Quanhui Liu(刘全慧). Chin. Phys. B, 2019, 28(9): 097401.
[2] Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach
Hui Gu(顾辉). Chin. Phys. B, 2018, 27(6): 060503.
[3] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[4] Morphological and electrical properties of SrTiO3/TiO2/SrTiO3 sandwich structures prepared by plasma sputtering
Saqib Jabbar, Riaz Ahmad, Paul K Chu. Chin. Phys. B, 2017, 26(1): 010702.
[5] Temperature effect on the electronic structure of Nb:SrTiO3 (100) surface
Zhang Shuang-Hong (张双红), Wang Jia-Ou (王嘉鸥), Qian Hai-Jie (钱海杰), Wu Rui (吴蕊), Zhang Nian (张念), Lei Tao (雷涛), Liu Chen (刘晨), Kurash Ibrahim (奎热西·伊布拉欣). Chin. Phys. B, 2015, 24(2): 027901.
[6] Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST
Du Hong-Lei (杜洪磊), Xue Qian (薛倩), Gao Xiao-Yang (高小洋), Yao Feng-Rui (姚凤蕊), Lu Shi-Yang (卢世阳), Wang Ye-Long (汪业龙), Liu Chun-Heng (刘春恒), Zhang Yong-Cheng (张永成), Lü Yue-Guang (吕跃广), Li Shan-Dong (李山东). Chin. Phys. B, 2015, 24(12): 127704.
[7] Tuning the electrons at the LaAlO3/SrTiO3 interface:From growth to beyond growth
Xie Yan-Wu (谢燕武), Hwang Harold Y. Chin. Phys. B, 2013, 22(12): 127301.
[8] Synthesis and characterization of highly-ordered barium-strontium titanate nanotube arrays fabricated by sol—gel method
Chen Yu(陈煜), Chen Wei(程伟), Guo Feng(郭峰), Li Mei-Ya(李美亚), Liu Wei(刘威), and Zhao Xing-Zhong(赵兴中). Chin. Phys. B, 2009, 18(9): 3922-3927.
No Suggested Reading articles found!