Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097806    DOI: 10.1088/1674-1056/ac0cde
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture

Pengfei Shi(史鹏飞)1,†, Yangyang Cao(曹阳阳)1, Hongge Zhao(赵宏革)1, Renjing Gao(高仁璟)2,‡, and Shutian Liu(刘书田)2
1 College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116023, China;
2 Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China
Abstract  The electromagnetic wave enhanced transmission (ET) through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential. It was important to find a general design method which can realize efficient ET for arbitrary-shaped apertures. For achieving ET with maximum efficiency at specific frequency through arbitrary-shaped subwavelength aperture, a topology optimization method for designing metamaterials (MTM) microstructure was proposed in this study. The MTM was employed and inserted vertically in the aperture. The description function for the arbitrary shape of the aperture was established. The optimization model was founded to search the optimal MTM microstructure for maximum enhanced power transmission through the aperture at the demanded frequency. Several MTM microstructures for ET through the apertures with different shapes at the demanded frequency were designed as examples. The simulation and experimental results validate the feasibility of the method. The regularity of the optimal ET microstructures and their advantages over the existing configurations were discussed.
Keywords:  metamaterial      enhanced transmission      topology optimization      arbitrary-shaped aperture  
Received:  17 March 2021      Revised:  27 May 2021      Accepted manuscript online:  21 June 2021
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1808215), the Natural Science Foundation of Liaoning Province, China (Grant No. 20180540082), and the Science and Technology Program of Shenzhen (Grant No. JSGG 20200102155001779).
Corresponding Authors:  Pengfei Shi, Renjing Gao     E-mail:  pfshi@dlmu.edu.cn;renjing@dlut.edu.cn

Cite this article: 

Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田) Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture 2021 Chin. Phys. B 30 097806

[1] Wiltshire M C, Pendry J B, Young I R, Larkman D J, Gilderdale D and Hajnal J V 2001 Science 291 849
[2] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[3] Ran J, Zhang Y, Chen X D, Fang K, Zhao J and Chen H 2016 Sci. Rep. 6 23973
[4] Jiang Q, Xiang C, Luo Y, Wu L, Zhang Q, Zhao S, Qin F and Lin J 2020 Mater. Design 185 108270
[5] Yi J, Campbell S D, Feng R, Burokur S N and Werner D H 2018 Opt. Express 26 505
[6] Zhu J, Lao C, Chen T and Li J 2020 Mater. Design 191 108618
[7] Kandwal A, Li J, Igbe T, Liu Y, Li S, Wang L, Hao Y and Nie Z 2020 Sci. Rep. 10 113
[8] Liu T and Kim S 2019 Sci. Rep. 9 16494
[9] Mei Y H, Shao Y and Hang Z H 2019 Acta Phys. Sin. 68 227803 (in Chinese)
[10] Yang X, Wei T, Chen F, Gao F, Du J and Hou Y 2020 Chin. Phys. B 29 107303
[11] Wen J, Wang K, Feng H, Chen J, Gao X, Hong R and Zhang D 2017 Plasmonics 12 1257
[12] Lee I, Sohn I, Kang C, Kee C, Yang J and Lee J W 2017 Opt. Express 25 6365
[13] Cetin A E, Turkmen M, Aksu S, Etezadi D and Altug H 2015 Appl. Phys. B 118 29
[14] Hu Y, Liu G, Liu Z, Liu X, Zhang X, Cai Z, Liu M, Gao H and Gu G 2015 Plasmonics 10 483
[15] Fan J, He Y, Jiao Y, Hao L, Zhao J and Jia S 2021 Chin. Phys. B 30 034207
[16] Bethe H A 1944 Phys. Rev. 66 163
[17] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[18] Zhu H, Yao A and Zhong M 2016 Chin. Phys. B 25 107301
[19] He M, Ma W and Wang X 2013 Chin. Phys. B 22 114201
[20] Wang Y, Duan G, Zhang L, Ma L, Zhao X and Zhang X 2018 Sci. Rep. 8 2087
[21] Liang T, Shao W, Wei X and Liang M 2018 Chin. Phys. B 27 100204
[22] Kang E S H, Ekinge H and Jonsson M P 2019 Opt. Mater. Express 9 1404
[23] Yuan J, Kan Q, Geng Z, Xie Y, Wang C and Chen H 2014 Chin. Phys. B 23 084201
[24] Malyuskin O and Fusco V 2017 Sens Imaging 18 7
[25] Guo Y S, Zhou J, Lan C W, Wu H Y and Bi K 2014 Appl. Phys. Lett. 104 204103
[26] Hajian H, Ozbay E and Caglayan H 2017 Sci. Rep. 7 4741
[27] Guo Y and Zhou J 2015 Sci. Rep. 5 8144
[28] Xiao S, Peng L and Mortensen N A 2010 Opt. Express 18 6040
[29] Ramaccia D, Palma L D, Ates D, Ozbay E, Toscano A and Bilotti F 2014 IEEE Trans. Antennas Propag. 62 2093
[30] Azemi S N and Rowe W S 2018 IEEE Antennas Wireless Propag. Lett. 17 2246
[31] Wang Y, Qin Y and Zhang Z 2014 Plasmonics 9 203
[32] Lim H, Yoo J and Choi J S 2014 Struct. Multidisc. Optim. 49 209
[33] Jung J, Goo S and Kook J 2020 Mater. Design 191 108627
[34] Diaz A R and Sigmund O A 2010 Struct. Multidisc. Optim. 41 163
[35] Lin Z, Liu V, Pestourie R and Johnson S G 2019 Opt. Express 27 15765
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[6] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[7] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[8] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[9] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[12] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[13] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[14] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!