Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 095204    DOI: 10.1088/1674-1056/abf104
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Discharge characteristic of very high frequency capacitively coupled argon plasma

Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华)
Key Laboratory of Atomic and Molecular Physics&Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied. The mean electron temperature and electron density are calculated by using the Ar spectral lines at different values of power (20 W-70 W) and four different frequencies (13.56 MHz, 40.68 MHz, 94.92 MHz, and 100 MHz). The mean electron temperature decreases with the increase of power at a fixed frequency. The mean electron temperature varies non-linearly with frequency increasing at constant power. At 40.68 MHz, the mean electron temperature is the largest. The electron density increases with the increase of power at a fixed frequency. In the cases of driving frequencies of 94.92 MHz and 100 MHz, the obtained electron temperatures are almost the same, so are the electron densities. Particle-in-cell/Monte-Carlo collision (PIC/MCC) method developed within the Vsim 8.0 simulation package is used to simulate the electron density, the potential distribution, and the electron energy probability function (EEPF) under the experimental condition. The sheath width increases with the power increasing. The EEPF of 13.56 MHz and 40.68 MHz are both bi-Maxwellian with a large population of low-energy electrons. The EEPF of 94.92 MHz and 100 MHz are almost the same and both are nearly Maxwellian.
Keywords:  very high frequency discharges      capacitively coupled plasma      particle-in-cell/Monte-Carlo collisions  
Received:  24 December 2020      Revised:  02 March 2021      Accepted manuscript online:  23 March 2021
PACS:  52.80.Pi (High-frequency and RF discharges)  
  52.25.-b (Plasma properties)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11665021) and the Natural Science Foundation of Gansu Province, China (Grant No. 20JR10RA078).
Corresponding Authors:  Gui-Qin Yin     E-mail:  yinguiq@126.com

Cite this article: 

Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华) Discharge characteristic of very high frequency capacitively coupled argon plasma 2021 Chin. Phys. B 30 095204

[1] Meyyappan M, Delzeit L, Cassell A and Hash D 2003 Plasma Sources Sci. Technol. 12 205
[2] Vanjaria J, Arjunan A C, Salagaj T, Tompa G S and Yu H 2020 ECS J. Solid State Sci. Technol. 9 034009
[3] Wu Y Q, Tao K, Jiang S, Jia R and Huang Y 2020 Chin. Phys. B 29 037702
[4] Qian M Y, Fan Q Q, Ren C S, Wang D Z, Nie Q, Zhang J J and Wen X Q 2012 Thin Solid Films 521 265
[5] Sharma S, Sirse N, Kaw P K, Turner M M and Ellingboe A R 2016 Phys. Plasmas 23 110701
[6] Sahu B B and Han J G 2016 Phys. Plasmas 23 123504
[7] Liu Y X, Zoltán D, Ihor K, Edmund S, Wang Y N and Julian S 2019 Plasma Sources Sci. Technol. 28 075005
[8] Yuan Q H, Li Y and Yin G Q 2019 J. Mater. Sci. 54 12488
[9] Lieberman M A, Booth J P, Chabert P, Rax J M and Turner M M 2002 Plasma Sources Sci. Technol. 11 283
[10] Han D M, Liu Y X, Gao F, Wang X Y, Li A, Xu J, Jing Z G and Wang Y N 2018 J. Appl. Phys. 123 223304
[11] Wilczek S, Trieschmann J, Schulze J, Schuengel E, Brinkmann R P, Derzsi A, Korolov I, Donkó Z and Mussenbrock T 2015 Plasma Sources Sci. Technol. 24 024002
[12] Sharma S, Sirse N, Kuley A, Sen A and Turner M M 2020 Plasma Sources Sci. Technol. 29 045003
[13] Sarveshwar S, Abhijit S, Sirse N, Turner M M and Ellingboe A R 2018 Phys. Plasmas 25 080705
[14] Amanatides E, Stamou S and Mataras D 2001 J. Appl. Phys. 90 5786
[15] Ahn S K, You S J and Chang H Y 2006 Appl. Phys. Lett. 89 161506
[16] Zhu X M Chen W C, Zhang S, Guo Z G, Hu D W and Pu Y K 2007 J. Phys. D: Appl. Phys. 40 7019
[17] Abdel-Fattah E 2013 Vacuum 97 65
[18] Wilczek S, Schulze J, Brinkmann R P, Donkó Z and Mussenbrock T 2020 J. Appl. Phys. 127 181101
[19] Liu J K, Zhang Y R, Zhao K, Wen D Q and Wang Y N 2020 Phys. Plasmas 27 023502
[20] Sharma S, Sirse N, Sen A, Wu J S and Turner M M 2019 J. Phys. D: Appl. Phys. 52 365201
[21] Yuan Q H, Ren P, Liu S S, Wang J J and Yin G Q 2020 Phys. Lett. A 384 126367
[22] Saeed A, Abrar M, Khan A W, Jan F, Khan B S, Shah H U, Zaka-Ul-Islam M and Zakaullah M 2016 Radiation Effects and Defects in Solids 171 384
[23] Li J, Zhu X M and Pu Y K 2011 J. Phys. D: Appl. Phys. 44 455203
[24] Yuri R 2009 Phys. Scr. T134 014025
[25] Gordillo Vázquez F J, Camero M and Gómez Aleixandre C 2006 Plasma Sources Sci. Technol. 15 42
[26] Rakhimova T V, Braginsky O V, Klopovskiy K S, Kovalev A S, Lopaev D V, Proshina O V, Rakhimov A T, Shamiryan D, Vasilieva A N and Voloshin D G 2009 IEEE Trans. Plasma Sci. 37 1683
[27] Fujimoto and Takashi 1979 J. Phys. Soc. Jpn. 47 273
[28] Tanisli M, Sahin N, Younus M, Rehman N U and Demir S 2017 Phys. Plasmas 24 102123
[29] GordilloVázquez F J, Camero M and GómezAleixandre C 2006 Plasma Sources Sci. Technol. 15 42
[30] Ohno N, Razzak M, Ukai H, Takamura S and Uesugi Y 2006 Plasma and Fusion Research 1 28
[31] Sijde B V D and Mullen J A M V D 1990 J. Quantum Spectrosc. Radiat. Transfer 44 39
[32] Rehman N U, Anjum Z, Masood A, Farooq M, Ahmad I and Zakaullah M 2013 Opt. Commun. 296 72
[33] Heijden H V D, Mullen J V D, Baier J and Korber A 2002 J. Phys. B: At. Mol. Opt. Phys. 35 3633
[34] Taghizadeh L, Joost V D M, Nikiforov A and Leys C 2015 Plasma Process. Polym. 12 799
[35] BURM K T A L 2005 J. Plasma Phys. 71 379
[36] Iordanova E, Vries N D, Guillemier M and Mullen J J A M 2007 J. Phys. D: Appl. Phys. 41 015208
[37] Georgieva V, Bogaerts A and Gijbels R 2003 J. Appl. Phys. 94 3748
[38] Tagra Samir, Liu Y, Zhao L L and Zhou Y W 2017 Chin. Phys. B 26 115201
[1] Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma
Wen-Chong Ouyang(欧阳文冲), Qi Liu(刘琦), Tao Jin(金涛), and Zheng-Wei Wu(吴征威). Chin. Phys. B, 2021, 30(9): 095203.
[2] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[3] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[4] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[5] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[6] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng (徐东升), Zou Shuai (邹帅), Xin Yu (辛煜), Su Xiao-Dong (苏晓东), Wang Xu-Sheng (王栩生). Chin. Phys. B, 2014, 23(6): 065201.
[7] The effects of process conditions on the plasma characteristic in radio-frequency capacitively coupled SiH4/NH3/N2 plasmas: Two-dimensional simulations
Liu Xiang-Mei (刘相梅), Song Yuan-Hong (宋远红), Jiang Wei (姜巍), Yi Lin (易林). Chin. Phys. B, 2013, 22(4): 045204.
[8] Driving frequency effects on the mode transition in capacitively coupled argon discharges
Liu Xiang-Mei(刘相梅), Song Yuan-Hong(宋远红), and Wang You-Nian(王友年). Chin. Phys. B, 2011, 20(6): 065205.
[9] Diagnosis of a low pressure capacitively coupled argon plasma by using a simple collisional-radiative model
Yu Yi-Qing(虞一青), Xin Yu(辛煜), and Ning Zhao-Yuan(宁兆元). Chin. Phys. B, 2011, 20(1): 015207.
No Suggested Reading articles found!