Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 098502    DOI: 10.1088/1674-1056/abf135
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

C band microwave damage characteristics of pseudomorphic high electron mobility transistor

Qi-Wei Li(李奇威)1,2,†, Jing Sun(孙静)2, Fu-Xing Li(李福星)3, Chang-Chun Chai(柴常春)3, Jun Ding(丁君)1, and Jin-Yong Fang(方进勇)2
1 School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China;
2 China Academy of Space Technology(Xi'an), Xi'an 710100, China;
3 Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The damage effect characteristics of GaAs pseudomorphic high electron mobility transistor (pHEMT) under the irradiation of C band high-power microwave (HPM) is investigated in this paper. Based on the theoretical analysis, the thermoelectric coupling model is established, and the key damage parameters of the device under typical pulse conditions are predicted, including the damage location, damage power, etc. By the injection effect test and device microanatomy analysis through using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), it is concluded that the gate metal in the first stage of the device is the vulnerable to HPM damage, especially the side below the gate near the source. The damage power in the injection test is about 40 dBm and in good agreement with the simulation result. This work has a certain reference value for microwave damage assessment of pHEMT.
Keywords:  high power microwave      pseudomorphic high electron mobility transistor      damage mechanism      C band      low noise amplifier (LNA)  
Received:  27 November 2020      Revised:  02 March 2021      Accepted manuscript online:  24 March 2021
PACS:  85.30.Tv (Field effect devices)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the Foundation Enhancement Plan and the National Natural Science Foundation of China (Grant No. 61974116).
Corresponding Authors:  Qi-Wei Li     E-mail:  liqiwei161@163.com

Cite this article: 

Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇) C band microwave damage characteristics of pseudomorphic high electron mobility transistor 2021 Chin. Phys. B 30 098502

[1] Backstrom M G and Lovstrand K G 2004 IEEE Trans. Electromagn. Campat. 46 396
[2] MÅnsson D, Thottappillil R, Nilsson T, LundÉn O and BÄckstrÖm M 2008 IEEE Trans. Electromagn. Campat. 50 434
[3] Kim K and Iliadis A A 2010 Solid-State Electron. 54 18
[4] Ren Z, Yin W Y, Shi Y B and Liu Q H 2010 IEEE Trans. Electron Dev. 57 345
[5] Li H, Chai C C, Liu Y Q, Wu H and Yang Y T 2018 Chin. Phys. B 27 088502
[6] Yu X H, Chai C C, Liu Y, Yang Y T and Xi X W 2015 Chin. Phys. B 24 048502
[7] Sangwan V, Kapoor D, Tan C M, Lin C H and Chiu H C 2019 IEEE Trans. Electromagn. Campat. 61 564
[8] Zhang J, Jin Z X, Yang J H, Zhong H H, Shu T, Zhang J D, Qian B L, Yuan C W, Li Z Q, Fan Y W, Zhou S Y and Xu L R 2011 IEEE Trans. Plasma Sci. 39 1438
[9] Fan Y W, Zhong H H, Li Z Q, Shu T, Zhang J D, Liu J L, Yang J H, Zhang J, Yuan C W and Luo L 2008 Rev. Sci. Instrum. 79 034703
[10] Zhang C B, Wang H G, Zhang J D, Du G X and Yang J 2014 IEEE Trans. Electromagn. Campat. 56 1545
[11] Liu Y, Chai C C, Fan Q Y, Shi C L, Xi X W, Yu X H and Yang Y T 2016 Microelectron. Reliab. 66 32
[12] Liu Y, Chai C C, Yang Y T, Sun J and Li Z P 2016 Chin. Phys. B 25 048504
[13] Yu X H, Ma Z Y, Chai C C, Shi C L and Wang P 2020 IEEE Trans. Electromagn. Campat. 62 101
[14] Xi X W, Chai C C, Zhao G, Yang Y T, Yu X H and Liu Y 2016 Chin. Phys. B 25 048503
[15] Zhou L, San Z W, Hua Y J, Lin L, Zhang S, Zhao Z G, Zhou H J and Yin W Y 2017 IEEE Trans. Electromagn. Campat. 59 902
[16] Tong Z H, Ding P, Su Y B, Wang D H and Jin Z 2021 Chin. Phys. B 30 018501
[17] Integrated Systems Engineering AG 2004 ISE-TCAD Dessis Simulation User's Manual (Zurich: Switzerland) p. 195
[18] Li Y, Chai C C, Liu Y Q, Li Y, Wu H, Zhang W, Li F X and Yang Y T 2019 IEICE Electron. Express 16 20190498
[19] Zhang C B, Wang H G, Zhang J D and Du G X 2015 IEEE Trans. Electromagn. Campat. 57 1132
[20] Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C and Hao Y 2014 Chin. Phys. B 23 097307
[21] Wunsch D C and Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244
[22] Tasca D M 1970 IEEE Trans. Nucl. Sci. 17 364
[1] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[2] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[3] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[4] Floquet topological phase transition in two-dimensional quadratic band crossing system
Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏). Chin. Phys. B, 2021, 30(6): 067304.
[5] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[6] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[7] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[8] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[9] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[10] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[11] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[12] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[13] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[14] Thermal conductivity of systems with a gap in the phonon spectrum
E Salamatov. Chin. Phys. B, 2018, 27(7): 076502.
[15] Photonic crystal structures: Beam deflector and beam router
Utku Erdiven, Erkan Tetik, Faruk Karadag. Chin. Phys. B, 2018, 27(4): 044204.
No Suggested Reading articles found!