Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097502    DOI: 10.1088/1674-1056/ac012d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films

Guankai Lin(林冠凯)1, Haoru Wang(王昊儒)1, Xuhui Cai(蔡旭晖)1, Wei Tong(童伟)2, and Hong Zhu(朱弘)1,3,†
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China;
3 Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei 230026, China
Abstract  We report an investigation into the magnetoresistance (MR) of La0.8Ba0.2MnO3 ultrathin films with various thicknesses. While the 13 nm-thick film shows the commonly reported negative magnetoresistive effect, the 6 nm- and 4 nm-thick films display unconventional positive magnetoresistive (PMR) behavior under certain conditions. As well as the dependence on the film's thickness, it has been found that the electrical resistivity and the PMR effect of the thinner films are very dependent on the test current. For example, the magnetoresistive ratio of the 4 nm-thick film changes from +46% to -37% when the current is increased from 10 nA to 100 nA under 15 kOe at 40 K. In addition, the two thinner films present opposite changes in electrical resistivity with respect to the test current, i.e., the electroresistive (ER) effect, at low temperatures. We discuss the complex magnetoresistive and ER behaviors by taking account of the weak contacts at grain boundaries between ferromagnetic metallic (FMM) grains. The PMR effect can be attributed to the breaking of the weak contacts due to the giant magnetostriction of the FMM grains under a magnetic field. Considering the competing effects of the conductive filament and local Joule self-heating at grain boundaries on the transport properties, the dissimilar ER effects in the two thinner films are also understandable. These experimental findings provide an additional approach for tuning the magnetoresistive effect in manganite films.
Keywords:  positive magnetoresistance      electroresistance      Joule self-heating      conductive filament  
Received:  24 March 2021      Revised:  08 May 2021      Accepted manuscript online:  14 May 2021
PACS:  73.43.Qt (Magnetoresistance)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  52.50.Nr (Plasma heating by DC fields; ohmic heating, arcs)  
  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674298), the National Key Research and Development Program of China (Grant No. 2017YFA0403502), and the Users with Excellence Project of Hefei Science Center CAS (Grant No. 2018HSC-UE013).
Corresponding Authors:  Hong Zhu     E-mail:  zhuh@ustc.edu.cn

Cite this article: 

Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘) Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films 2021 Chin. Phys. B 30 097502

[1] Ramirez A P 1997 J. Phys.: Condens. Matter 9 8171
[2] Li X Y, Zhao L and Wei X Y, et al. 2018 Chin. Phys. B 27 117501
[3] Xiang P H, Zhong N, Sun L, Tang X D and Duan C G 2018 J. Phys. D: Appl. Phys. 51 275304
[4] Zener C 1951 Phys. Rev. 82 403
[5] Jin K J, Lu H B, Zhou Q L, et al. 2005 Phys. Rev. B 71 184428
[6] Lu H B, Yang G Z, Chen Z H, et al. 2004 Appl. Phys. Lett. 84 5007
[7] Khachar U D, Solanki P S, Choudhary R J, et al. 2012 Appl. Phys. A 108 733
[8] Chen P, Xing D Y and Du Y W 2001 Phys. Rev. B 64 104402
[9] Ziese M 2003 Phys. Rev. B 68 132411
[10] Yun S H, Dhakal T, Goswami D, Singh G, Herbard A and Biswas A 2008 J. Appl. Phys. 103 07E317
[11] Shaykhutdinov K A, Nikitin S E, Petrov M I, Terent'ev K I, Semenov S V and Popkov S I 2015 J. Appl. Phys. 117 163918
[12] Wu T, Ogale S B, Garrison J E, Nagaraj B, Biswas A, Chen Z, Greene R L, Ramesh R and Venkatesan T 2001 Phys. Rev. Lett. 86 5998
[13] Sun Y H, Zhao Y G and Wang R G 2017 Chin. Phys. B 26 047103
[14] Lourembam J, Ding J F, Bera A, Lin W N and Wu T 2014 Appl. Phys. Lett. 104 133508
[15] Nhalil H and Elizabeth S 2016 Solid State Commun. 248 6
[16] Carneiro A S and Jardim R F 2006 Phys. Rev. B 73 012410
[17] Yang R F, Sun Y, Ma X, Tang Y K, Li Q A and Cheng Z H 2006 Phys. Rev. B 73 092404
[18] Gao J and Hu F X 2006 Mater. Sci. Eng. B 126 250
[19] Kumar R, Gupta A K, Singh D P, Kumar V, Bhalla G L and Khare N 2008 J. Magn. Magn. Mater. 320 2741
[20] Yang C P, Chen S S, Zhou Z H, Xu L F, Wang H, Hu J F, Morchshakov V and Bärner K 2007 J. Appl. Phys. 101 063909
[21] Del Valle J, Ramírez J G, Rozenberg M J and Schuller I K 2018 J. Appl. Phys. 124 211101
[22] Lin G K, Wang H R, Cai X H, Tong W and Zhu H 2020 AIP Adv. 10 055206
[23] Dey P and Nath T K 2006 Phys. Rev. B 73 214425
[24] Lim K P, Ng S W, Lau N L, et al. 2019 Appl. Phys. A 125 745
[25] Skini R, Svedlindh P, Dhahri E, et al. 2019 J. Mater. Sci.: Mater Electron 30 17363
[26] Zurauskiene N, Balevicius S, Stankevic V, et al. 2018 J. Mater. Sci. 53 12996
[27] Arun B, Suneesh M V and Vasundhara M 2016 J. Magn. Magn. Mater. 418 265
[28] Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M and Hwang C S 2010 Nat. Nanotechnol. 5 148
[29] Sadhu A and Bhattacharyya S 2014 Chem. Mater. 26 1702
[30] Phong P T, Bau L V, Hoan L C, et al. 2016 J. Alloy. Comp. 656 920
[31] Endo T, Uehara K, Yoshii T, Yorkura M, Zhu H, Nogues J, Colino J and Endo K 2010 Trans. Mat. Res. Soc. Jpn. 35 727
[32] Mahendiran R, Ibarra M R, Marquina C, Garcia-Landa B, Morellon L, Maignan A, Raveau B, Arulraj A and Rao C N R 2003 Appl. Phys. Lett. 82 242
[33] Koroleva L I, Demin R V, Kozlov A V, Zashcherinskii D M, Gorbenko O Y, Kaul A R, Melnikov O V and Mukovskii Y M 2007 J. Magn. Magn. Mater. 316 e644
[34] Yazdi S T, Tajabor N and Khoshnoud D S 2010 J. Magn. Magn. Mater. 322 3131
[35] Xu M H, Hu X K, Yu J Y, Cui X G and Zhang S Y 2008 Solid State Commun. 148 217
[36] Tokunaga M, Tokunaga Y and Tamegai T 2004 Phys. Rev. Lett. 93 037203
[1] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[2] Electric current-induced giant electroresistance in La0.36Pr0.265Ca0.375MnO3 thin films
Yinghui Sun(孙颖慧), Yonggang Zhao(赵永刚), Rongming Wang(王荣明). Chin. Phys. B, 2017, 26(4): 047103.
[3] Coexistence of unipolar and bipolar modes in Ag/ZnO/Pt resistive switching memory with oxygen-vacancy and metal-Ag filaments
Han-Lu Ma(马寒露), Zhong-Qiang Wang(王中强), Hai-Yang Xu(徐海阳), Lei Zhang(张磊), Xiao-Ning Zhao(赵晓宁), Man-Shu Han(韩曼舒), Jian-Gang Ma(马剑钢), Yi-Chun Liu(刘益春). Chin. Phys. B, 2016, 25(12): 127303.
[4] Influence of interface within the composite barrier on the tunneling electroresistance of ferroelectric tunnel junctions with symmetric electrodes
Wang Pin-Zhi (王品之), Zhu Su-Hua (朱素华), Pan Tao (潘涛), Wu Yin-Zhong (吴银忠). Chin. Phys. B, 2015, 24(2): 027301.
[5] First-principles study of the formation and electronic structure of a conductive filament in ZnO-based resistive random access memory
Zhao Jing (赵晶), Dong Jing-Yu (董静雨), Ren Shu-Xia (任书霞), Zhang Li-Yong (张礼勇), Zhao Xu (赵旭), Chen Wei (陈伟). Chin. Phys. B, 2014, 23(12): 127301.
[6] Resistive switching characteristics of Ti/ZrO2/Pt RRAM device
Lei Xiao-Yi (雷晓艺), Liu Hong-Xia (刘红侠), Gao Hai-Xia (高海霞), Yang Ha-Ni (杨哈妮), Wang Guo-Ming (王国明), Long Shi-Bing (龙世兵), Ma Xiao-Hua (马晓华), Liu Ming (刘明). Chin. Phys. B, 2014, 23(11): 117305.
[7] Effects of different dopants on switching behavior of HfO2-based resistive random access memory
Deng Ning (邓宁), Pang Hua (庞华), Wu Wei (吴畏). Chin. Phys. B, 2014, 23(10): 107306.
[8] Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches
Meng Yang(孟洋), Zhang Pei-Jian(张培健), Liu Zi-Yu(刘紫玉), Liao Zhao-Liang(廖昭亮), Pan Xin-Yu(潘新宇), Liang Xue-Jin(梁学锦), Zhao Hong-Wu(赵宏武), and Chen Dong-Min(陈东敏). Chin. Phys. B, 2010, 19(3): 037304.
[9] Magnetism and magnetoresistance of Er1-xSmxMn6Ge6(x=0.2-1.0) compounds
Wang Ru-Wu (汪汝武), Zhang Shao-Ying (张绍英), Zhang Li-Gang (张立刚), Yao Jin-Lei (姚金雷), Li Yun-Bao (李云宝), Shen Bao-Gen (沈保根). Chin. Phys. B, 2004, 13(7): 1129-1133.
[10] Spin-glass-like behaviour and positive magnetoresistance in oxygen deficient La2/3Ca1/3MnO3-$\delta$ thin films
Zhang Fu-Chang (张福昌), Chen Wei-Ran (陈卫然), Gong Wei-Zhi (龚伟志), Xu Bo (许波), Qiu Xiang-Gang (邱祥冈), Zhao Bai-Ru (赵柏儒). Chin. Phys. B, 2004, 13(5): 783-788.
No Suggested Reading articles found!