Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087401    DOI: 10.1088/1674-1056/abea97
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films

Yun-Qi Zhao(赵蕴琦)1,†, Heng Zhang(张衡)1,†, Xiang-Bin Cai(蔡祥滨)2, Wei Guo(郭维)1, Dian-Xiang Ji(季殿祥)1, Ting-Ting Zhang(张婷婷)1, Zheng-Bin Gu(顾正彬)1, Jian Zhou(周健)1,‡, Ye Zhu(朱叶)3,§, and Yue-Feng Nie(聂越峰)1,¶
1 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China;
3 Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
Abstract  Ba2IrO4 is a sister compound of the widely investigated Sr2IrO4 and has no IrO6 octahedral rotation nor net canted antiferromagnetic moment, thus it acts as a system more similar to the high-Tc cuprate. In this work, we synthesize the Ba2IrO4 epitaxial films by reactive molecular beam epitaxy and study their crystalline structure and transport properties under biaxial compressive strain. High resolution scanning transmission electron microscopy and x-ray diffraction confirm the high quality of films with partial strain relaxation. Under compressive epitaxial strain, the Ba2IrO4 exhibits the strain-driven enhancement of the conductivity, consistent with the band gap narrowing and the stronger hybridization of Ir-t2g and O-2p orbitals predicted in the first-principles calculations.
Keywords:  molecular beam epitaxy      iridate oxides      epitaxial strain      transport properties  
Received:  08 January 2021      Revised:  07 February 2021      Accepted manuscript online:  01 March 2021
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774153, 11861161004, 51772143, 11974163, and 51672125), the National Key Research and Development Program of China (Grant No. 2016YFA0201104), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 0213-14380167 and 0213-14380198), and the Hong Kong Research Grants Council (RGC) through the NSFC-RGC Joint Research Scheme, China (Grant No. N_PolyU531/18). {These authors contributed equally to this work.
Corresponding Authors:  Jian Zhou, Ye Zhu, Yue-Feng Nie     E-mail:  zhoujian@nju.edu.cn;yezhu@polyu.edu.hk;ynie@nju.edu.cn

Cite this article: 

Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰) Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films 2021 Chin. Phys. B 30 087401

[1] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[2] Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H and Arima T 2009 Science 323 1329
[3] Xu H, Cui Z Z, Zhai X F and Lu Y L 2019 Chin. Phys. B 28 078102
[4] Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Mitchell J F, Allen J W and Kim B J 2014 Science 345 187
[5] De la Torre A, McKeown Walker S, Bruno F Y, Riccó S, Wang Z, Gutierrez Lezama I, Scheerer G, Giriat G, Jaccard D, Berthod C, Kim T K, Hoesch M, Hunter E C, Perry R S, Tamai A and Baumberger F 2015 Phys. Rev. Lett. 115 176402
[6] Kim J, Casa D, Upton M H, Gog T, Kim Y-J, Mitchell J F, van Veenendaal M, Daghofer M, van den Brink J, Khaliullin G and Kim B J 2012 Phys. Rev. Lett. 108 177003
[7] Kim Y K, Sung N H, Denlinger J D and Kim B J 2016 Nat. Phys. 12 37
[8] Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T and Feng D L 2015 Phys. Rev. X 5 041018
[9] Zhao L, Torchinsky D H, Chu H, Ivanov V, Lifshitz R, Flint R, Qi T, Cao G and Hsieh D 2016 Nat. Phys. 12 32
[10] Battisti I, Bastiaans K M, Fedoseev V, De la Torre A, Iliopoulos N, Tamai A, Hunter E C, Perry R S, Zaanen J, Baumberger F and Allan M P 2017 Nat. Phys. 13 21
[11] Wang F and Senthil T 2011 Phys. Rev. Lett. 106 136402
[12] Watanabe H, Shirakawa T and Yunoki S 2013 Phys. Rev. Lett. 110 027002
[13] Cosio-Castaneda C, Tavizon G, Baeza A, De la Mora P and Escudero R 2007 J. Phys.: Condens. Matter 19 446210
[14] Korneta O B, Qi T, Chikara S, Parkin S, De Long L E, Schlottmann P and Cao G 2010 Phys. Rev. B 82 115117
[15] Haskel D, Fabbris G, Zhernenkov M, Kong P P, Jin C Q, Cao G and van Veenendaal M 2012 Phys. Rev. Lett. 109 027204
[16] Souri M, Connell J G, Nichols J, Terzic J, Cao G and Seo A 2019 J. Appl. Phys. 126 185101
[17] Guo W, Ji D X, Gu Z B, Zhou J, Nie Y F and Pan X Q 2020 Phys. Rev. B 101 085101
[18] Okabe H, Isobe M, Takayama-Muromachi E, Koda A, Takeshita S, Hiraishi M, Miyazaki M, Kadono R, Miyake Y and Akimitsu J 2011 Phys. Rev. B 83 155118
[19] Nichols J, Korneta O B, Terzic J, Cao G, Brill J W and Seo S S A 2014 Appl. Phys. Lett. 104 121913
[20] Uchida M, Nie Y F, King P D C, Kim C H, Fennie C J, Schlom D G and Shen K M 2014 Phys. Rev. B 90 075142
[21] Okabe H, Takeshita N, Isobe M, Takayama-Muromachi E, Muranaka T and Akimitsu J 2011 Phys. Rev. B 84 115127
[22] Nichols J, Terzic J, Bittle E G, Korneta O B, De Long L E, Brill J W, Cao G and Seo S S A 2013 Appl. Phys. Lett. 102 141908
[23] Cordfunke E H P and Meyer G 1962 Recl. Trav. Chim. Pays-Bas 81 495
[24] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Blöchl P E 1994 Phys. Rev. B 50 17953
[27] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[28] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[7] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[8] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[9] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[10] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[11] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[12] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[13] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[14] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[15] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
No Suggested Reading articles found!