Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 075205    DOI: 10.1088/1674-1056/abe1a6
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST

Zong Xu(许棕)1,2, Zhen-Wei Wu(吴振伟)3,†, Ling Zhang(张凌)3,‡, Yue-Heng Huang(黄跃恒)1,2, Wei Gao(高伟)3, Yun-Xin Cheng(程云鑫)3,4, Xiao-Dong Lin(林晓东)1,2, Xiang Gao(高翔)1,2,3, Ying-Jie Chen(陈颖杰)3, Lei Li(黎嫘)3,4, Yin-Xian Jie(揭银先)1,2,3, Qing Zang(臧庆)1,2,3, Hai-Qing Liu(刘海庆)3, and EAST team3
1 Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China;
2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
4 University of Science & Technology of China, Hefei 230031, China
Abstract  The core impurity confinement properties are experimentally investigated in the Experimental Advanced Superconducting Tokamak (EAST) plasma heated by lower hybrid wave (LHW) and electron cyclotron resonance heating (ECRH) (LHW+ECRH). It is shown that the impurity confinement time (τimp) in the L-mode plasma jointly heated by LHW and ECRH is weakly dependent on electron density but strongly dependent on the heating power, thus it is shorter than that in LHW-only heated L-mode plasma with the similar plasma parameters. The combined heating of LHW and ECRH can reduce the collisionality and indicates a more effective heating method for core τimp reduction and normalized poloidal beta (βP) improvement. It should be emphasized that in this high βP operation window the small ELM regime can be accessed, and an L-mode level τimp (40 ms-80 ms) and high βN (~1.7) can be obtained simultaneously. It means that this typical small ELMy H-mode regime has an advantage in avoiding the serious tungsten accumulation, and will be competitive in future long-pulse steady-state and high-performance operation with high-Z material plasma-facing components.
Keywords:  LHW and ECRH heating      impurity confinement time      tungsten      small ELMs regime      EAST  
Received:  31 October 2020      Revised:  27 January 2021      Accepted manuscript online:  01 February 2021
PACS:  52.25.Fi (Transport properties)  
  52.35.Ra (Plasma turbulence)  
  52.25.Vy (Impurities in plasmas)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFE031110 and 2017YFE0301205), the National Natural Science Foundation of China (Grant Nos. 11905146, 11775269, and 11805113), the Users with Excellence Program of Hefei Science Center, Chinese Academy of Sciences (Grant No. 2019HSC-UE014), and the Fund from the Shenzhen Clean Energy Research Institute, China.
Corresponding Authors:  Zhen-Wei Wu, Ling Zhang     E-mail:  zwwu@ipp.ac.cn;zhangling@ipp.ac.cn

Cite this article: 

Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST 2021 Chin. Phys. B 30 075205

[1] Isler R C 1984 Nucl. Fusion 24 1599
[2] Isler R C, Roman W L and Hodge W L 1985 Phys. Rev. Lett. 55 2413
[3] Philipps V 2011 J. Nucl. Mater. 415 S2
[4] Dux R, Neu R, Peeters A G, Pereverzev G, Mück A, Ryter F, Stober J and ASDEX Upgrade Team 2003 Plasma Phys. Control. Fusion 45 1815
[5] Leigheb M, Romanelli M, Gabellieri L, Carraro L, Mattioli M, Mazzotta C, Puiatti M E, Lauro-Taroni L, Marinucci M, Nowak S, Panaccione L, Pericoli V, Smeulders P, Tudisco O, Sozzi C, Valisa M and the FTU team 2007 Plasma Phys. Control. Fusion 49 1897
[6] Puiatti M E, Valisa M, Mattioli M, Bolzonella T, Bortolon A, Coffey I, Dux R, Hellermann M von, Monier-Garbet P, Nave M F F, Ongena J and contributors to the EFDA-JET Workprogramme 2003 Plasma Phys. Control. Fusion 45 2011
[7] Cui Z Y, Zhang K, Morita S, Ji X Q, Ding X T, Xu Y, Sun P, Gao J M, Dong C F, Zheng D L, Li Y G, Jiang M, Li D, Zhong W L, Liu Yi, Dong Y B, Song S D, Yu L M, Shi Z B, Fu B Z, Lu P, Huang M, Yuan B S, Yang Q W and Duan X R 2018 Nucl. Fusion 58 056012
[8] Odstrcil T, Howard N T, Sciortino F, Chrystal C, Holland C, Hollmann E, McKee G, Thome K E and Wilks T M 2020 Phys. Plasma 27 082503
[9] Perry M E, Brooks N H, Content D A, Hulse R A, Ali Mahdavi M and Moos H W 1991 Nucl. Fusion 31 1859
[10] Angioni C, Sertoli M, Bilato R, Bobkov V, Loarte A, Ochoukov R, Odstrcil T, Pütterich T, Stober J and The ASDEX Upgrade Team 2017 Nucl. Fusion 57 056015
[11] Scavino E, Bakos J, Weisen H and TCV Team 2004 Plasma Phys. Control. Fusion 46 857
[12] Parisot T, Guirlet R, Bourdelle C, Garbet X, Dubuit N, Imbeaux F and Thomas P R 2008 Plasma Phys. Control. Fusion 50 055010
[13] Xu Z, Wu Z W, Zhang L, Gao W, Ye Y, Chen K Y, Yuan Y, Zhang W, Yang X D, Chen Y J, Zhang P F, Huang J, Wu C R, Morita S, Oishi T, Zhang J Z, Duan Y M, Zang Q, Ding S Y, Liu H Q, Chen J L, Hu L Q, Xu G S, Guo H Y and the EAST team 2018 Nucl. Fusion 58 016001
[14] Zhang L, Morita S. Xu Z, Zhang P F, Zang Q, Duan Y M, Liu H Q, Zhao H L, Ding F, Oishi T, Gao W, Huang J, Yang X D, Chen Y J, Wu Z W, Xu P, Ding B J, Hu C D, Gong X Z, Hu L Q and EAST team 2017 Nucl. Mater. Energy 12 774
[15] Du H F, Ding S Y, Chen J L, Wang Y F, Lian H, Xu G S, Zhai X M, Liu H Q, Zang Q, Lyu B, Duan Y M, Qian J P and Gong X Z 2018 Nucl. Fusion 58 066011
[16] Yang Y L, Xiang N and Hu Y M 2017 Phys. Plasma 24 082503
[17] Giruzzi G, Artaud J F, Dumont R J, Imbeaux F, Bibet P, Berger-By G, Bouquey F, Clary J, Darbos C, Ekedahl A, Hoang G T, Lennholm M, Maget P, Magne R, Ségui J L, Bruschi A and Granucci G 2004 Phys. Rev. Lett. 93 255002
[18] Yuan Y, Hu L Q, Wang X G, Wang X J, Xu H D, Luo Z P, Chen K Y, Lin S Y, Duan Y M, Chang P X, Zhao H L, He K Y and Liang Y F 2016 Phys. Plasma 23 062503
[19] Liu Z X, Gao X, Jie Y X, Ding B J and Yang Y 2012 Plasma Sci. Technol. 14 278
[20] Nave M F F, Rapp J, Bolzonella T, Dux R, Mantsinen M J, Budny R, Dumortier P, von Hellermann M, Jachmich S, Koslowshi H R, Maddison G, Messiaen A, Monier-Garbet P, Ongena J, Puiatti M E, Strachan J, Telesca G, Unterberg B, Valisa M, de Vries P and contributors to the JET-EFDA Workprogramme 2003 Nucl. Fusion 43 1204
[21] Wan Y X, Li J G, Weng P D and EAST team 2006 Plasma Sci. Technol. 8 253
[22] Zhao L M, Shan J F, Liu F K, Jia H, Wang M, Liu L, Wang X J, Xu H D and LHCD team 2010 Plasma Sci. Technol. 12 118
[23] Liu F K, Ding B J, Li J G, Shan J F, Wang M, Liu L, Zhao L M, Li M H, Li Y C, Yang Y, Wu Z G, Feng J Q, Hu H C, Jia H, Huang Y Y, Wei W, Cheng M, Xu L, Zang Q, Lyu B, Lin S Y, Duan Y M, Wu J H, Peysson Y, Decker J, Hillariret J, Ekedahi A, Luo Z P, Qian J P, Shen B, Gong X Z, Hu L Q and the EAST team 2015 Nucl. Fusion 55 123022
[24] Zhao Y P, Zhang X J, Mao Y Z, Yuan S, Xue D Y, Deng X, Wang L, Ju S Q, Cheng Y, Qin C M, Chen G, Lin Y, Li J G, Wan B N, Song Y T, Braun F, Kumazawa R and Wukitch S 2014 Fusion Eng. Des. 89 2642
[25] Wang X J, Liu F K, Shan J F, Xu H D, Wu D J, Li B, Wei W, Zhang J, Huang Y Y, Tang Y Y, Xu W Y, Hu H C, Wang J, Xu L, Zhang Y Y and Feng J Q 2015 Fusion Eng. Des. 96 181
[26] Chen K Y, Xu L Q, Hu L Q, Duan Y M, Li X Q, Yuan Y, Mao S T, Sheng X L and Zhao J L 2016 Rev. Sci. Instrum. 87 063504
[27] Zhang L, Morita S, Xu Z, Wu Z W, Zhang P F, Wu C R, Gao W, Oishi T, Goto M, Shen Y C, Chen Y J, Liu X, Wang Y M, Dong C F, Zhang H M, Huang X L, Gong X Z, Hu L Q, Chen J L, Zhang X D, Wan B N and Li J G 2015 Rev. Sci. Instrum. 86 123509
[28] Seguin F H, Petrasso R and Marmar E S 1983 Phys. Rev. Lett. 51 455
[29] Moret J M and Tore Supra 1992 Nucl. Fusion 32 1241
[30] Rice J E, Reinke M L, Gao C, Howard N T, Chilenski M A, Delgado-Aparicio L, Granetz R S, Greenward M J, Hubbard A E, Hughes J W, Lrby J H, Lin Y, Marmar E S, Mumgaard R T, Scott S D, Terry J L, Walk J R, White A E, Whyte D G, Wolfe S M and Wukitch S J 2015 Nucl. Fusion 55 033014
[31] Scavino E, Bakos J S, Dux R, Weisen H and TCV team 2003 Plasma Phys. Control. Fusion 45 1961
[32] Mattioli M, Giannella R, Myrnas R, Demichelis C, Denne-Hinnov B, Dudok De Wit T and Magyar G 1995 Nucl. Fusion 35 1115
[33] Leung W K, Rowan W L, Wiley J C, Bravenec R V, Gentle K W, Hodge W L, Patterson D M, Philliphs P E, Price T R and Richards B 1986 Plasma Phys. Control. Fusion 28 1753
[34] Cesario R, Amicucci L, Cardinali A, Castaldo C, Marinucci M, Napoli F, Paoletti F, De Arcangelis D, Ferrari M, Galli A, Gallo G, Pullara E, Schettini G and Tuccillo A A 2014 Nucl. Fusion 54 043002
[35] Dux R and Peeters A G 2000 Nucl. Fusion 40 1721
[36] Dumont R J and Giruzzi G 2004 Phys. Plasma 11 3449
[37] Wan B N, Liang Y F, Gong X Z, Xiang N, Xu G S, Sun Y W, Wang L, Qian J P, Liu H Q, Zeng L, Zhang L, Zhang X J, Ding B J, Zang Q, Lyu B, Garofalo A M, Ekedahi A, Li M H, Ding F, Ding S Y, Du H F, Kong D F, Yu Y, Yang Y, Luo Z P, Huang J, Zhang T, Zhang Y, Li G Q, Xia T Y, the EAST team and Collaborators 2019 Nucl. Fusion 59 112003
[38] Puiatti M E, Valisa M, Angioni C, Garzotti L, Mantica P, Mattiolo M, Carraro L, Coffey I, Sozzi C and JET-EFDA contributors 2006 Phys. Plasma 13 042501
[39] Andreev V F, Borschegovskij A A, Chistyakov V V, Dnestrovskij Y N, Gorbunov E P, Kasyanova N V, Lysenko S E, Melnikov A V, Myalton T B, Roy I N, Sergeev D S and Zenin V N 2016 Plasma Phys. Control. Fusion 58 055008
[40] Takenaga H, Higashijima S, Oyama N, Bruskin L G, Koide Y, Ide S, Shirai H, Sakamoto Y, Suzuki T, Hill K W, Rewoldt G, Kramer G J, Nazikian R, Takizuka T, Fujita T, Sakasa A, Kamada Y, Kubo H and the JT-60 Team 2003 Nucl. Fusion 43 1235
[41] Cao G M, Li Y D, Li Q, Zhang X D, Sun P J, Wu G J, Hu L Q and the EAST team 2015 Phys. Scr. 90 025603
[42] Villegas D, Guirlet R, Bourdelle C, Hoang G T, Garbet X and Sabot R 2010 Phys. Rev. Lett. 105 035002
[43] Shen Y C, Lyu B, Zhang H M, Li Y Y, Fu J, Vogel G, Wang X J, Xu H D, Wu D J, Zang Q, Liu H Q, Liu F K, Wan B N and Ye M Y 2019 Phys. Plasma 26 032507
[44] Marinoni A, Brunner S, Camenen Y, Coda S, Graves J P, Lapillonne X, Pochelon A, Sauter O and Villard L 2009 Plasma Phys. Control. Fusion 51 055016
[45] Huang Y H, et al., 2020 Nucl. Fusion (under review)
[46] Gong X, Garofalo A M, Huang J, Qian J, Holcomb C T, Ekedah A, Maingi R, Li E, Zeng L, Zhang B, Chen J, Wu M, Du H, Li M, Zhu X, Sun Y, Xu G, Zang Q, Wang L, Zhang L, Liu H, Lyu B, Sun P, Ding S, Zhang X, Liu F, Zhao Y, Xiao B, Hu J, Hu C, Hu L, Li J, Wan B and the EAST team 2019 Nucl. Fusion 59 086030
[47] Xu G S, Yang Q Q, Yan N, Wang Y F, Xu X Q, Guo H Y, Maingi R, Wang L, Qian J P, Gong X Z, Chan V S, Zhang T, Zang Q, Li Y Y, Zhang L, Hu G H and Wan B N 2019 Phys. Rev. Lett. 122 255001
[48] Wang H Q, Xu G S, Wan B N, Ding S Y, Guo H Y, Shao L M, Liu S C, Xu X Q, Wang E, Yan N, Naulin V, Nielsen A H, Juul Rasmussen J, Candy J, Bravenes R, Sun Y W, Shi T H, Liang Y F, Chen R, Zhang W, Wang L, Chen L, Zhao N, Li Y L, LIU Y L, Hu G H and Gong X Z 2014 Phys. Rev. Lett. 112 185004
[49] Wang H Q, Xu G S, Guo H Y, Wan B N, Yan N, Ding S Y, Chen R, Zhang W, Wang L, Liu S C, Shao L M, Chen L, Liu Y L, Li Y L, Hu G H and Zhao N 2014 Nucl. Fusion 54 043014
[50] Gao X, Yang Y, Zhang T, Liu H Q, Li G Q, Ming T F, Liu Z X, Wang Y M, Zeng L, Han X, Liu Y K, Wu M Q, Qu H, Shen B, Zang Q, Yu Y W, Kong D F, Gao W, Zhang L, Cai H S, Wu X M, Hanada K, Zhong F B, Liang Y F, Hu C D, Liu F K, Gong X Z, Xiao B J, Wan B N, Zhang X D, Li J G and the EAST team 2017 Nucl. Fusion 57 056021
[51] Pütterich T, Dux R, Janzer M A, McDermott R M and ASDEX Upgrade team 2011 J. Nucl. Mater. 415 S334
[52] Xu Z, et al., 2020 Plasma Phys. Control. Fusion (under review)
[53] Li M H, Ding B J, Liu F K, Shan J F, Wang M, Xu H D, Cesario R, Napoli F, Castaldo C, Cardinali A, Liu L, Zhao L M, Hu H C, Zhang X J, Li Y C, Wu Z G, Ma W D, Goniche M, Peysson Y, Ekedahl A, Zhang L, Lin S Y, Qian J P, Chen Y J, Yang Y, Feng J Q, Jia H, Wang Y F, Wu C B and the EAST team 2019 Plasma Phys. Control. Fusion 61 065005
[54] Li Y L, Xu G S, Wu Z W, Zhang B, Zhang L, Yang X D, Chen M W, Zhang T, Liu H Q, Wan B N, Gong X Z, Goniche M, Ekedahi A, Warrier M, Xiao C, Gao W, Ou J, Cao L, Liu C L, Wang M, Li M H, Li Y C, Xu Q, Liang Y F, Wang L, Sun Z, Xu J C, Feng W, Yan N, Chen R and EAST team 2018 Phys. Plasma 25 082503
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[3] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[4] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[5] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[6] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[7] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[8] Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak
Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team. Chin. Phys. B, 2022, 31(10): 105203.
[9] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[10] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[11] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[12] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[13] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[14] Measurement of molybdenum ion density for L-mode and H-mode plasma discharges in the EAST tokamak
Yongcai Shen(沈永才), Hongming Zhang(张洪明), Bo Lyu(吕波), Yingying Li(李颖颖), Jia Fu(符佳), Fudi Wang(王福地), Qing Zang(臧庆), Baonian Wan(万宝年), Pan Pan(潘盼), Minyou Ye(叶民友). Chin. Phys. B, 2020, 29(6): 065206.
[15] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
No Suggested Reading articles found!