Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076801    DOI: 10.1088/1674-1056/abe29d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility

Zhao-Yong Jiao(焦照勇)1, Yi-Ran Wang(王怡然)1, Yong-Liang Guo(郭永亮)1,2, and Shu-Hong Ma(马淑红)1,†
1 School of Physics, Henan Normal University, Xinxiang 453007, China;
2 School of Science, Henan Institute of Technology, Xinxiang 453003, China
Abstract  By using first-principles calculation, we study the properties of h-BN/BC3 heterostructure and the effects of external electric fields and strains on its electronic and optical properties. It is found that the semiconducting h-BN/BC3 has good dynamical stability and ultrahigh stiffness, enhanced electron mobility, and well-preserved electronic band structure as the BC3 monolayer. Meanwhile, its electronic band structure is slightly modified by an external electric field. In contrast, applying an external strain can mildly modulate the electronic band structure of h-BN/BC3 and the optical property exhibits an apparent redshift under a compressive strain relative to the pristine one. These findings show that the h-BN/BC3 hybrid can be designed as optoelectronic device with moderately strain-tunable electronic and optical properties.
Keywords:  heterostructure      electronic and optical properties      first-principles calculation  
Received:  24 November 2020      Revised:  15 January 2021      Accepted manuscript online:  03 February 2021
PACS:  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  68.35.Gy (Mechanical properties; surface strains)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904081) and the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410247 and 21A140013).
Corresponding Authors:  Shu-Hong Ma     E-mail:  mash.phy@htu.edu.cn

Cite this article: 

Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红) Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility 2021 Chin. Phys. B 30 076801

[1] Schleder G R, Acosta C M and Fazzio A 2020 ACS Appl. Mater. Inter. 12 20149
[2] Jiang X, Kuklin A V, Baev A, Ge Y, Ågren H, Zhang H and Prasad P N 2020 Phys. Rep. 848 1
[3] Cheng R, Wang F, Yin L, Xu K, Ahmed Shifa T, Wen Y, Zhan X, Li J, Jiang C, Wang Z and He J 2017 Appl. Phys. Lett. 110 173507
[4] Zhao J, Zeng H and Zhou X 2019 Carbon 145 1
[5] Joo M K, Moon B H, Ji H, Han G H, Kim H, Lee G, Lim S C, Suh D and Lee Y H 2016 Nano Lett. 16 6383
[6] Kim K K, Lee H S and Lee Y H 2018 Chem. Soc. Rev. 47 6342
[7] Wang W, Lei W, Zhang X J, Li H, Tang X and Ming X 2020 Chin. Phys. B 29 056201
[8] Ma X, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803
[9] Aeschlimann S, Rossi A, Chávez-Cervantes M, Krause R, Arnoldi B, Stadtmüller B, Aeschlimann M, Forti S, Fabbri F, Coletti C and Gierz I 2020 Sci. Adv. 6 0761
[10] Sajjad M, Makarov V, Mendoza F, Sultan M S, Aldalbahi A, Feng P X, Jadwisienczak W M, Weiner B R and Morell G 2019 Nanomaterials 9 925
[11] Chen X K, Pang M, Chen T, Du D and Chen K Q 2020 ACS Appl. Mater. Inter. 12 15517
[12] Iwasaki T, Endo K, Watanabe E, Tsuya D, Morita Y, Nakaharai S, Noguchi Y, Wakayama Y, Watanabe K, Taniguchi T and Moriyama S 2020 ACS Appl. Mater. Inter. 12 8533
[13] De Sanctis A, Mehew J D, Alkhalifa S, Withers F, Craciun M F and Russo S 2018 Nano Lett. 18 7919
[14] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C and Wu W W 2016 Adv. Mater. 28 8302
[15] Su J, Feng L P, Zheng X, Hu C, Lu H and Liu Z 2017 ACS Appl. Mater. Inter. 9 40940
[16] Pande G, Siao J Y, Chen W L, Lee C J, Sankar R, Chang Y M, Chen C D, Chang W H, Chou F C and Lin M T 2020 ACS Appl. Mater. Inter. 12 18667
[17] Liu B, Zhao Y Q, Yu Z L, Wang L Z and Cai M Q 2018 J. Colloid Interface Sci. 513 677
[18] Afzal A M, Javed Y, Akhtar Shad N, Iqbal M Z, Dastgeer G, Munir Sajid M and Mumtaz S 2020 Nanoscale 12 3455
[19] Li Q, Liu M, Zhang Y and Liu Z 2016 Small 12 32
[20] Guo Q, Wang G, Kumar A and Pandey R 2017 Nanotechnology 28 475708
[21] Gwan-Hyoung Lee, Cui X, Kim Y D, Arefe G, Zhang X, Lee C H, Ye F, Watanabe K, Taniguchi T, Kim P and Hone J 2015 ACS Nano 9 7019
[22] Pham K D and Nguyen C V 2018 Diam. Relat. Mater. 88 151
[23] Zhang Y, Wu Z F, Gao P F, Fang D Q, Zhang E H and Zhang S L 2018 RSC Adv. 8 1686
[24] Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C and Rabczuk T 2019 Carbon 149 733
[25] Behzad S 2017 Surf. Sci. 665 37
[26] Zhang H, Liao Y, Yang G and Zhou X 2018 ACS Omega 3 10517
[27] Luo M, Xu Y E and Zhang Q X 2018 Solid State Comm. 273 44
[28] Yuan P F, Han J N, Fan Z Q, Zhang Z H and Wang C Z 2020 J. Phys.: Condens. Matter. 32 475001
[29] Xie Z, Sun F, Yao R, Zhang Y, Zhang Y, Zhang Z, Fan J, Ni L and Duan L 2019 Appl. Surf. Sci. 475 839
[30] Zeng H, Zhao J, Cheng A Q, Zhang L, He Z and Chen R S 2018 Nanotechnology 29 075201
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Grimme S 2006 J. Comput. Chem. 27 1787
[34] Monkhorst H J 1977 Phys. Rev. B 16 1748
[35] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[36] Wang Y R, Jiao Z Y, Ma S H and Guo Y L 2019 J. Power Sour. 413 117
[37] Sánchez-Monroy X, Torres-Arenas J and Gil-Villegas A 2019 J. Chem. Phys. 150 144507
[38] Zhao T, Zhang S, Guo Y and Wang Q 2016 Nanoscale 8 233
[39] ahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[40] Fu Z H, Zhang Q F, Legut D, Si C, Germann T C, Lookman T, Du S Y, Francisco J S and Zhang R F 2016 Phys. Rev. B 94 104103
[41] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[42] Shen N F, Yang X D, Wang X X, Wang G H and Wan J G 2020 Chem. Phys. Lett. 749 137430
[43] Fivaz R and Mooser E 1967 Phys. Rev. 163 743
[44] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[45] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[46] Tan C, Yang Q, Meng R, Liang Q, Jiang J, Sun X, Ye H and Chen X P 2016 J. Mater. Chem. C 4 8171
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[9] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[10] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[11] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[12] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[13] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[14] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[15] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
No Suggested Reading articles found!