Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076107    DOI: 10.1088/1674-1056/abe116
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness

Bin-Hua Chu(初斌华) and Yuan Zhao(赵元)
School of Physics and Opto-Electronic Engineering, Ludong University, Yantai 264025, China
Abstract  Using the evolutionary methodology for crystal structure prediction, we have predicted the orthorhombic Cmcm and Pnma phases for ScB4. The earlier proposed CrB4-, FeB4-, MnB4-, and ReP4-type structures for ScB4 are excluded. It is first discovered that the Cmcm phase transforms to the Pnma phase at about 18 GPa. Moreover, both phases are dynamically and mechanically stable. The large bulk modulus, shear modulus, and Young's modulus of the two phases make it an optimistic low compressible material. Moreover, the strong covalent bonding nature of ScB4 is confirmed by the ELF analysis. The strong covalent bonding contributes greatly to its stability.
Keywords:  first-principles calculations      high pressure      transition metal borides  
Received:  16 December 2020      Revised:  27 January 2021      Accepted manuscript online:  29 January 2021
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.66.Fn (Inorganic compounds)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11704170 and 61705097) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AP02 and ZR2016EMP01).
Corresponding Authors:  Bin-Hua Chu     E-mail:  chubinhua0125@126.com

Cite this article: 

Bin-Hua Chu(初斌华) and Yuan Zhao(赵元) Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness 2021 Chin. Phys. B 30 076107

[1] Occelli F, Farber D L and Toullec R L 2003 Nat. Mater. 2 151
[2] Zheng J C 2005 Phys. Rev. B 72 052105
[3] Zhang Y, Sun H and Chen C F 2006 Phys. Rev. B 73 144115
[4] Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385
[5] Zhang Y, Sun H and Chen C 2004 Phys. Rev. Lett. 93 195504
[6] Solozhenko V L, Kurakevych O O, Andrault D, Godec Y L and Mezouar M 2009 Phys. Rev. Lett. 102 015506
[7] He D W, Zhao Y S, Daemen L, Qian J, Shen T D and Zerda T W 2002 Appl. Phys. Lett. 81 643
[8] Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
[9] Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
[10] Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
[11] Tse J S, Klug D D, Uehara K, Li Z Q, Haines J and Léger J M 2000 Phys. Rev. B 61 10029
[12] Gu Q F, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
[13] Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R and Kolmogorov A N 2012 Phys. Rev. B 85 144116
[14] Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing R C and Lian J 2012 Appl. Phys. Lett. 100 111907
[15] Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M and Abakumov A M 2013 Phys. Rev. Lett. 111 157002
[16] Zhang M, Lu M C, Du Y H, Gao L L, Lu C and Liu H Y 2014 J. Chem. Phys. 140 174505
[17] Levchenko G, Lyashchenko A, Baumer V, Evdokimova A, Filippov V, Paderno Y and Shitsevalova N 2006 J. Solid State Chem. 179 2949
[18] Przybylska M, Reddoch A H and Ritter G J 1963 J. Am. Chem. Soc. 85 407
[19] Pediaditakis A, Haseloff S and Hillebrecht H 2011 Solid State Sci. 13 1465
[20] Tanaka T, Okada S and Gurin V N 1998 J. Alloys Compd. 267 211
[21] Bai T T, Zhang G T, Zhao Y R, Chen L, Mu B X, Han Y F and Wei Q 2019 Mol. Phys. 118 e1603411
[22] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[23] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[24] Wang Y C, Lv J, Zhu L, Lu S H, Yin K T, Li Q, Wang H, Zhang L J and Ma Y M 2015 J. Phys.: Condens. Matter 27 203203
[25] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[26] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Will G and Kiefer B 2001 Z. Allg. Chem. 627 2100
[31] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[32] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[33] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[34] Hill R 1952 Proc. Phys. Soc. London 65 394
[35] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[36] Wang Y C, Tian F B, Li D, Duan D F, Xie H, Liu B B, Zhou Q and Cui T 2019 Chin. Phys. B 28 56104
[37] Zhang D, Jin X L, Zhuang Q, Li Y, Yang S H, Song L Y, Liu B B and Cui T 2019 Chin. Phys. B 28 56101
[38] Lu M Y, Huang Y P, Tian F B, Li D, Duan D F, Zhou Q and Cui T 2020 Chin. Phys. B 29 53104
[39] Pediaditakis A, Haseloff S and Hillebrecht H 2011 Solid State Sci. 13 1465
[40] Tanaka T, Okada S and Gurin V N 1998 J. Alloys Compd. 267 211
[41] Xu H B, Wang Y X and Lo V C 2011 Phys. Status Solidi RRL 5 13
[42] Zhang X Y, Qin J Q, Ning J L, Ning X W, Sun X T, Li M Z, Ma R P and Liu J 2013 J. Appl. Phys. 114 183517
[43] Zhang M G and Yan H Y 2014 Solid State Commun. 187 53
[44] Yang M, Wang Y C, Yao J L, Li Z P, Zhang J, Wu L L, Li H, Zhang J W and Gou H Y 2014 J. Solid State Chem. 213 52
[45] Fu Y Y, Li Y W and Huang H M 2014 Chin. Phys. Lett. 31 116201
[46] Zhang G T, Gao R, Zhao Y R, Bai T T and Hu Y F 2017 J. Alloys Compd. 723 802
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[9] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[10] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
No Suggested Reading articles found!