Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060202    DOI: 10.1088/1674-1056/abd7e3
GENERAL Prev   Next  

Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints

Jun-Cai Pu(蒲俊才)1, Jun Li(李军)2, and Yong Chen(陈勇)1,3,4,†
1 School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, and Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200241, China;
2 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China;
3 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China;
4 Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  The nonlinear Schrödinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas. However, due to the difficulty of solving this equation, in particular in high dimensions, lots of methods are proposed to effectively obtain different kinds of solutions, such as neural networks among others. Recently, a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation's dynamical behaviors from spatiotemporal data directly. Compared with traditional neural networks, this method can obtain remarkably accurate solution with extraordinarily less data. Meanwhile, this method also provides a better physical explanation and generalization. In this paper, based on the above method, we present an improved deep learning method to recover the soliton solutions, breather solution, and rogue wave solutions of the nonlinear Schrödinger equation. In particular, the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time. Moreover, the effects of different numbers of initial points sampled, collocation points sampled, network layers, neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions. Numerical experiments show that the dynamical behaviors of soliton solutions, breather solution, and rogue wave solutions of the integrable nonlinear Schrödinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.
Keywords:  deep learning method      neural network      soliton solutions      breather solution      rogue wave solutions  
Received:  17 December 2020      Revised:  29 December 2020      Accepted manuscript online:  04 January 2021
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675054), the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213), and the Project of Science and Technology Commission of Shanghai Municipality (Grant No. 18dz2271000).
Corresponding Authors:  Yong Chen     E-mail:  ychen@sei.ecnu.edu.cn

Cite this article: 

Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇) Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints 2021 Chin. Phys. B 30 060202

[1] Draper L 1966 Weather 21 2
[2] Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[3] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[4] Parkins A S and Walls D F 1998 Phys. Rep. 303 1
[5] Ablowitz M J and Clarkson P A 1992 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[6] Schrödinger E 1926 Phys. Rev. 28 1049
[7] Guo B L, Ling L M and Liu Q P 2012 Stud. Appl. Math. 130 317
[8] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[9] Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
[10] Qiao Z J 1994 J. Math. Phys. 35 2971
[11] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[12] Ohta Y and Yang J K 2012 Proc. R. Soc. A 468 1716
[13] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[14] Kavitha L and Daniel M 2003 J. Phys. A: Math. Gen. 36 10471
[15] Qiao Z J 1993 J. Math. Phys. 34 3110
[16] Wang B, Zhang Z and Li B 2020 Chin. Phys. Lett. 37 030501
[17] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[18] Mitchell T M 1997 Machine Learning (McGraw-Hill Press series in computer science)
[19] Bishop C M 2006 Pattern Recognition and Machine Learning (Springer)
[20] Alipanahi B, Delong A, Weirauch M T and Frey B J 2015 Nat. Biotechnol. 33 831
[21] Duda R O, Hart P E and Stork D G 2000 Pattern Classification (Wiley-Interscience Press)
[22] Lake B M, Salakhutdinov R and Tenenbaum J B 2015 Science 350 1332
[23] Krizhevsky A, Sutskever I and Hinton G 2017 Communications of the Acm 60 84
[24] Mcculloch W S and Pitts W 1943 Bull. Math. Biophys. 5 115
[25] Rosenblatt F 1958 Psychological Review 65 386
[26] Bryson A E and Ho Y C 1975 Applied Optimal Control: Optimization, Estimation, and Control (Taylor and Francis Press)
[27] Lagaris I E, Likas A and Fotiadis D I 1998 IEEE Transactions on Neural Networks 9 987
[28] Hornik K, Stinchcombe M and White H 1989 Neural Netw. 2 359
[29] Raissi M, Perdikaris P and Karniadakis G E 2019 J. Comput. Phys. 378 686
[30] Jagtap A D, Kharazmi E and Karniadakis G E 2020 Comput. Methods Appl. Mech. Engrg. 365 113028
[31] Lax P D 1968 Comm. Pure. Appl. Math. 21 467
[32] Yu S J, Toda K and Fukuyama T 1998 J. Phys. A: Math. Gen. 31 10181
[33] Iwao M and Hirota R 1997 J. Phys. Soc. Jpn. 66 577
[34] Osman M S, Ghanbari B and Machado J A T 2019 Eur. Phys. J. Plus 134 20
[35] Dong J J, Li B and Yuen M W 2020 Commun. Theor. Phys. 72 025002
[36] Hirota R 2004 Direct Methods in Soliton Theory (Springer-verlag Press)
[37] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn. 68 1508
[38] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Springer Press)
[39] Olver P J 1993 Applications of Lie Groups to Differential Equations (Springer Press)
[40] Zakharov V E, Manakov S V, Novikov S P and Pitaevskii L P 1984 The Theory of Solitons: The Inverse Scattering Method (Consultants Bureau Press)
[41] Pu J C and Chen Y 2020 Mod. Phys. Lett. B 34 2050288
[42] Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
[43] Li J and Chen Y 2020 Commun. Theor. Phys. 72 105005
[44] Bongard J and Lipson H 2007 Proc. Natl. Acad. Sci. USA 104 9943
[45] Raissi M, Perdikaris P and Karniadakis G E 2017 J. Comput. Phys. 348 683
[46] Li J and Chen Y 2020 Commun. Theor. Phys. 72 115003
[47] Li J and Chen Y 2020 Commun. Theor. Phys. 73 015001
[48] Marcucci G, Pierangeli D and Conti C 2020 Phys. Rev. Lett. 125 093901
[49] Baydin A G, Pearlmutter B A, Radul A A and Siskind J M 2018 J. Mach. Learn. Res. 18 1
[50] Stein M L 1987 Technometrics 29 143
[51] Choromanska A, Henaff M, Mathieu M, Arous G B and LeCun Y 2015 Proc. 18 Int. Conf. on Artificial Intelligence and Statistics, PMLR 38 192
[52] Liu D C and Nocedal J 1989 Math. Program. 45 503
[53] Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, Philadelphia Press)
[54] Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[55] Moslem W M 2011 Phys. Plasmas 18 032301
[56] Yan Z Y 2011 Phys. Lett. A 375 4274
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[5] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[6] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[7] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[10] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[11] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[12] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[13] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[14] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[15] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
No Suggested Reading articles found!