Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068702    DOI: 10.1088/1674-1056/abea81
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Computational model investigating the effect of magnetic field on neural-astrocyte microcircuit

Li-Cong Li(李利聪)1,2, Jin Zhou(周瑾)3, Hong-Ji Sun(孙洪吉)4, Peng Xiong(熊鹏)2, Hong-Rui Wang(王洪瑞)2, Xiu-Ling Liu(刘秀玲)2,†, and Chang-Yong Wang(王常勇)3,‡
1 College of Physics Science and Technology, Hebei University, Baoding 071002, China;
2 Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, China;
3 Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China;
4 Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Extremely low-frequency magnetic field is widely used as a noninvasive stimulation method in clinical practice and basic research. Electrical field induced from magnetic pulse can decrease or increase neuronal electrical activity. However, the cellular mechanism underlying the effects of magnetic field is not clear from experimental data. Recent studies have demonstrated that "non-neuronal" cells, especially astrocytes, may be the potential effector for transcranial magnetic stimulation (TMS). In the present study, we implemented a neural-astrocyte microcircuit computational model based on hippocampal architecture to investigate the biological effects of different magnetic field frequencies on cells. The purpose of the present study is to elucidate the main influencing factors of MS to allow a better understanding of its mechanisms. Our model reproduced the basic characteristics of the neuron and astrocyte response to different magnetic stimulation. The results predict that interneurons with lower firing thresholds were more active in magnetic fields by contrast to pyramidal neurons. And the synaptic coupling strength between the connected neurons may be one of the critical factor to affect the effect of magnetic field on cells. In addition, the simulations show that astrocytes can decrease or increase slow inward currents (SICs) to finely tune neuronal excitation, which suggests their key role in excitatory-inhibitory balance. The interaction between neurons and astrocytes may represent a novel target for effective therapeutic strategies involving magnetic stimulation.
Keywords:  magnetic stimulation      neural-astrocyte microcircuit      excitatory and inhibitory balance      computational model  
Received:  14 November 2020      Revised:  09 January 2021      Accepted manuscript online:  01 March 2021
PACS:  87.19.L- (Neuroscience)  
  87.19.lk (Glia)  
  87.50.wf (Biophysical mechanisms of interaction)  
  87.50.-a (Effects of electromagnetic and acoustic fields on biological systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61673158) and the Youth Talent Support Program of Hebei Province, China (Grant No. BJ2019044).
Corresponding Authors:  Xiu-Ling Liu, Chang-Yong Wang     E-mail:  liuxiuling121@hotmail.com;wcy2000_zm@163.com

Cite this article: 

Li-Cong Li(李利聪), Jin Zhou(周瑾), Hong-Ji Sun(孙洪吉), Peng Xiong(熊鹏), Hong-Rui Wang(王洪瑞), Xiu-Ling Liu(刘秀玲), and Chang-Yong Wang(王常勇) Computational model investigating the effect of magnetic field on neural-astrocyte microcircuit 2021 Chin. Phys. B 30 068702

[1] Carpenter L L, Conelea C, Tyrka A R, Welch E S, Greenberg B D, Price L H, Niedzwiecki M, Yip A G, Barnes J and Philip N S 2018 J. Affect. Disord. 235 414
[2] Mahajan U V, Parker J J, Williams N R, Bhati M T, Ku S, Grant G, Fisher R S, Stein S C and Halpern C H 2020 Brain Stimul. 13 430
[3] Koch G, Bonni S, Pellicciari M C, Casula E P, Mancini M, Esposito R, Ponzo V, Picazio S, Di Lorenzo F, Serra L, Motta C, Maiella M, Marra C, Cercignani M, Martorana A, Caltagirone C and Bozzali M 2018 NeuroImage 169 302
[4] Khedr E M, Mohamed K O, Soliman R K, Hassan A M M and Rothwell J C 2019 Neurorehab. Neural Repair 33 442
[5] Valero-Cabre A, Amengual J L, Stengel C, Pascual-Leone A and Coubard O A 2017 Neurosci. Biobehav. Rev. 83 381
[6] Syeda F, Magsood H, Lee E G, El-Gendy A A, Jiles D C and Hadimani R L 2017 AIP Adv. 7 056711
[7] Maeda F, Keenan J P, Tormos J M, Topka H and Pascual-Leone A 2000 Exp. Brain Res. 133 425
[8] Lee E G, Duffy W, Hadimani R L, Waris M, Siddiqui W, Islam F, Rajamani M, Nathan R and Jiles D C 2016 IEEE Trans. Magn. 52 5000804
[9] Pashut T, Magidov D, Ben-Porat H, Wolfus S, Friedman A, Perel E, Lavidor M, Bar-Gad I, Yeshurun Y and Korngreen A 2014 Front. Cell. Neurosci. 8 145
[10] Laakso I, Murakami T, Hirata A and Ugawa Y 2018 Brain Stimul. 11 166
[11] Wagner T, Rushmore J, Eden U and Valero-Cabre A 2009 Cortex 45 1025
[12] Tan T, Xie J, Tong Z, Liu T, Chen X and Tian X 2013 Brain Res. 1520 23
[13] Mueller J K, Grigsby E M, Prevosto V, Petraglia F W, III, Rao H, Deng Z D, Peterchev A V, Sommer M A, Egner T, Platt M L and Grill W M 2014 Nat. Neurosci. 17 1130
[14] Li B, Virtanen J P, Oeltermann A, schwarz C, Giese M A, Ziemann U and Benali A 2017 Elife 6 e30552
[15] Goodwin B D and Butson C R 2015 Neuromodulation 18 694
[16] Seo H, Schaworonkow N, Jun S C and Triesch J 2016 F1000$Research 5 1945
[17] Yi G, Wang J, Wei X, Deng B, Tsang K M, Chan W L and Han C 2014 Int. J. Neural Syst. 24 1450007
[18] Jin Q T, Wang J, Yi G S, Li H Y, Deng B, Wei X L and Che Y Q 2012 Acta Phys. Sin. 61 118701 (in Chinese)
[19] Pashut T, Wolfus S, Friedman A, Lavidor M, Bar-Gad I, Yeshurun Y and Korngreen A 2011 PLoS Comp. Biol. 7 e1002022
[20] Araque A, Parpura V, Sanzgiri R P and Haydon P G 1999 Trends Neurosci. 22 208
[21] Clarke D, Penrose M A, Penstone T, Fuller-Carter P I, Hool L C, Harvey A R, Rodger J and Bates K A 2017 Restor. Neurol. Neurosci. 35 557
[22] Golfert F, Hofer A, Thummler M, Bauer H and Funk R H 2001 Bioelectromagnetics 22 71
[23] Yuan Z X, Feng P H, Du M M and Wu Y 2020 Chin. Phys. B 29 030504
[24] Tawfik V L, Chang S Y, Hitti F L, Roberts D W, Leiter J C, Jovanovic S and Lee K H 2010 Neurosurgery 67 367
[25] Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y and Hirase H 2016 Nat. Commun. 7 11100
[26] Paixao S and Klein R 2010 Curr. Opin. Neurobiol. 20 466
[27] Hamilton N B and Attwell D 2010 Nat. Rev. Neurosci. 11 227
[28] Allen N J 2014 Ann. Rev. Cell. Dev. Bi. 30 439
[29] English D F, McKenzie S, Evans T, Kim K, Yoon E and Buzsaki G 2017 Neuron 96 505
[30] Nadkarni S and Jung P 2005 J. Integra. Neurosci. 4 207
[31] Kamitani Y, Bhalodia V M, Kubota Y and Shimojo S J N 2001 Neurocomputing 38-40 697
[32] Pinsky P F and Rinzel J 1994 J. Comput. Neurosci. 1 39
[33] Lawrence J J and McBain C J 2003 Trends Neurosci. 26 631
[34] Wang X J and Buzsaki G 1996 J. Neurosci. 16 6402
[35] Panagopoulos D J, Karabarbounis A and Margaritis L H 2002 Biochem. Biophys. Res. Commun. 298 95
[36] Modolo J, Thomas A W, Stodilka R Z, Prato F S and Legros A IEEE Fifth International Conference on Bio-inspired Computing: Theories & Applications, September 8-10 and September 23-26, Liverpool, United Kingdom/Changsha, China, pp. 1356-1364
[37] Goodman D and Brette R 2008 Front. Neuroinform. 2 5
[38] Miyawaki Y, Shinozaki T and Okada M 2012 J. Comput. Neurosci. 33 405
[39] Tsodyks M, Pawelzik K and Markram H 1998 Neural Comput. 10 821
[40] De Pitta M and Brunel N 2016 Neural Plast. 2016 7607924
[41] Destexhe A, Mainen Z F and Sejnowski T J 1994 J. Comput. Neurosci. 1 195
[42] Jahr C E and Stevens C F 1990 J. Neurosci. 10 3178
[43] Manninen T, Havela R and Linne M L 2018 Front. Comput. Neurosci. 12 14
[44] Ullah G, Jung P and Cornell-Bell A H 2006 Cell Calcium 39 197
[45] Li Y X and Rinzel J 1994 J. Theor. Biol. 166 461
[46] Parpura V and Haydon P G 2000 Proc. Natl. Acad. Sci. USA 97 8629
[47] Nadkarni S and Jung P 2003 Phys. Rev. Lett. 91 268101
[48] Schipke C G, Haas B and Kettenmann H 2008 Cereb. Cortex 18 2450
[49] Covelo A and Araque A 2018 Elife 7 e32237
[50] Zhang J M, Wang H K, Ye C Q, Ge W P, Chen Y R, Jiang Z L, Wu C P, Poo M M and Duan S M 2003 Neuron 40 971
[51] Bowser D N and Khakh B S 2004 J. Neurosci. 24 8606
[52] Araque A, Sanzgiri R P, Parpura V and Haydon P G 1998 J. Neurosci. 18 6822
[53] Jourdain P, Bergersen L H, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V and Volterra A 2007 Nat. Neurosci. 10 331
[54] Li J J, Du M M, Wang R, Lei J Z and Wu Y 2016 Int. J. Bifurcat. Chaos 26 1650138
[55] Stark E, Roux L, Eichler R, Senzai Y, Royer S and Buzsaki G 2014 Neuron 83 467
[56] Levkovitz Y, Marx J, Grisaru N and Segal M 1999 J. Neurosci. 19 3198
[57] Murphy S C, Palmer L M, Nyffeler T, Mueri R M and Larkum M E 2016 Elife 5 e13598
[58] Pell G S, Roth Y and Zangen A 2011 Prog. Neurobiol. 93 59
[59] Woo J, Min J O, Kang D S, Kim Y S, Jung G H, Park H J, Kim S, An H, Known J, Kim J, Shim I, Kim H G, Lee C J and Yoon B E 2018 Proc. Natl. Acad. Sci. USA 115 5004
[60] Tang R, Zhang G, Weng X, Han Y, Lang Y, Zhao Y, Zhao X, Wang K, Lin Q and Wang C 2016 Sci. Rep. 6 23420
[61] Pasley B N, Allen E A and Freeman R D 2009 Neuron 62 291
[62] Parri H R, Gould T M and Crunelli V 2001 Nat. Neurosci. 4 803
[63] Rusakov D A 2015 Nat. Rev Neurosci. 16 226
[64] De Pitta M, Goldberg M, Volman V, Berry H and Ben-Jacob E 2009 J. Biol. Phys. 35 383
[65] De Pitta M, Volman V, Berry H and Ben-Jacob E 2011 PLoS Comp. Biol. 7 e1002293
[66] Croarkin P E, Nakonezny P A, Wall C A, Murphy L L, Sampson S M, Frye M A and Port J D 2016 Psychiat. Res-Neuroim. 247 25
[67] Halassa M M, Fellin T and Haydon P G 2007 Trends Mol. Med. 13 54
[1] Analytical solutions of transient pulsed eddy current problem due to elliptical electromagnetic concentrative coils
Xiao Chun-Yan(肖春燕) and Zhang Jun(张军). Chin. Phys. B, 2010, 19(12): 120302.
No Suggested Reading articles found!