Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058101    DOI: 10.1088/1674-1056/abd749
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature

Yu Fu(付裕)1, Rui-Min Xu(徐锐敏)1, Xin-Xin Yu(郁鑫鑫)2, Jian-Jun Zhou(周建军)2, Yue-Chan Kong(孔月婵)2, Tang-Sheng Chen(陈堂胜)2, Bo Yan(延波)1, Yan-Rong Li(李言荣)1,3, Zheng-Qiang Ma(马正强)4, and Yue-Hang Xu(徐跃杭)1,†
1 University of Electronic Science and Technology of China, Chengdu 611731, China;
2 Nanjing Electronic Devices Institute, Nanjing 210016, China;
3 Sichuan University, Chengdu 610041, China;
4 University of Wisconsin-Madison, Madison, WI 53705, USA
Abstract  The interface state of hydrogen-terminated (C-H) diamond metal-oxide-semiconductor field-effect transistor (MOSFET) is critical for device performance. In this paper, we investigate the fixed charges and interface trap states in C-H diamond MOSFETs by using different gate dielectric processes. The devices use Al$_{2}$O$_{3}$ as gate dielectrics that are deposited via atomic layer deposition (ALD) at 80 $^\circ$C and 300 $^\circ$C, respectively, and their $C$-$V$ and $I$-$V$ characteristics are comparatively investigated. Mott-Schottky plots ($1/C^{2}$-$V_{\rm G}$) suggest that positive and negative fixed charges with low density of about 10$^{11}$ cm$^{-2}$ are located in the 80-$^\circ$C- and 300-$^\circ$C deposition Al$_{2}$O$_{3}$ films, respectively. The analyses of direct current (DC)/pulsed $I$-$V$ and frequency-dependent conductance show that the shallow interface traps (0.46 eV-0.52 eV and 0.53 eV-0.56 eV above the valence band of diamond for the 80-$^\circ$C and 300-$^\circ$C deposition conditions, respectively) with distinct density ($7.8 \times 10^{13}$ eV$^{-1}\cdot$cm$^{-2}$-$8.5 \times 10^{13}$ eV$^{-1}\cdot$cm$^{-2}$ and $2.2 \times 10^{13}$ eV$^{-1}\cdot$cm$^{-2}$-$5.1 \times 10^{13}$ eV$^{-1}\cdot$cm$^{-2}$ for the 80-$^\circ$C- and 300-$^\circ$C-deposition conditions, respectively) are present at the Al$_{2}$O$_{3}$/C-H diamond interface. Dynamic pulsed $I$-$V$ and capacitance dispersion results indicate that the ALD Al$_{2}$O$_{3}$ technique with 300-$^\circ$C deposition temperature has higher stability for C-H diamond MOSFETs.
Keywords:  diamond MOSFET      ALD temperature      pulsed I-V      interface trap      conductance method  
Received:  05 October 2020      Revised:  26 November 2020      Accepted manuscript online:  30 December 2020
PACS:  81.05.ug (Diamond)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61922021), the National Key Research and Development Project, China (Grant No. 2018YFE0115500), and the Fund from the Sichuan Provincial Engineering Research Center for Broadband Microwave Circuit High Density Integration, China.
Corresponding Authors:  Yue-Hang Xu     E-mail:  yuehangxu@uestc.edu.cn

Cite this article: 

Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭) Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature 2021 Chin. Phys. B 30 058101

[1] Kawarada H 1996 Surf. Sci. Rep. 26 205
[2] Geis M W, Wade T C, Wuorio C H, Fedynyshyn T H, Duncan B, Plaut M E, Varghese J O, Warnock S M, Vitale S A and Hollis M A 2018 Phys. Status Solidi A 215 1800681
[3] Ren Z Y, Liu J, Su K, Zhang J F, Zhang J C, Xu S R and Hao Y 2019 Chin. Phys. B 28 128103
[4] Fu Y, Xu R M, Xu Y H, Zhou J J, Wu Y Q, Kong Y C, Zhang Y, Chen T S and Yan B 2018 IEEE Electron Dev. Lett. 39 1704
[5] Verona C, Ciccognani W, Colangeli S, Limiti, Marinelli M and Verona R G 2016 J. Appl. Phys. 120 025104
[6] Hirama K, Sato H, Harada Y, Yamamoto H and Kasu M 2012 Jpn. J. Appl. Phys. 51 090112
[7] Kitabayashi Y, Kudo T, Tsuboi H, Yamada T, Xu D, Shibata M, Matsumura D, Hayashi Y, Syamsul M, Inaba M, Hiraiwa A and Kawarada H 2017 IEEE Electron Dev. Lett. 38 363
[8] Yu X X, Zhou J J, Qi C J, Cao Z Z, Kong Y Y and Chen T S 2018 IEEE Electron Dev. Lett. 39 1373
[9] Imanishi S, Horikawa K, Oi N, Okubo S, Kageura T, Hiraiwa A and Kawarada H 2019 IEEE Electron Dev. Lett. 40 279
[10] Verona C, Benetti M, Cannata D, Ciccognani W, Colangeli S, Pietrantonio F D, Limiti E, Marinelli M and Verona G R 2019 IEEE Electron Dev. Lett. 40 765
[11] Zhou C J, Wang J J, Guo J C, Yu C, He Z Z, Liu Q B, Gao X D, Cai S J and Feng Z H 2019 Appl. Phys. Lett. 114 063501
[12] Saha N C and Kasu M 2018 Diamond Rel. Mater. 91 219
[13] Hiraiwa A, Saito T, Matsumura D and Kawarada H 2015 J. Appl. Phys. 117 215304
[14] Ren Z Y, Yuan G S, Zhang J F, Xu L, Zhang J C, Chen W J and Y. Hao 2018 AIP Adv. 8 065026
[15] Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111
[16] Vardi A, Tordjman T, del Alamo J A and Kalish R 2014 IEEE Electron Dev. Lett. 35 1320
[17] Daicho A, Saito T, Kurihara S, Hiraiwa A and Kawarada H 2014 J. Appl. Phys. 115 223711
[18] Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M, and Heller E R 2007 IEEE Trans. Electron Dev. 54 2589
[19] Ren Z Y, Lv D D, Xu J M, Zhang J F, Zhang J C, Su K, Zhang C F and Y. Hao 2020 Appl. Phys. Lett. 116 013503
[20] Groner M D, Fabreguette F H, Elam J W and George S M 2004 Chem. Mater. 16 639
[21] Groner M D, Elam J W, Fabreguette F H and George S M 2002 Thin Solid Films 413 186
[22] Liu J W, Oosato H, Da B and Koide Y 2020 Appl. Phys. Lett. 117 163502
[23] Lasia A 2014 Electrochemical Impedance Spectropscopy and itsd Applications (New York: Springer-Verlag) p. 235
[24] Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E and Bergonzo P 2003 Appl. Phys. Lett. 82 2266
[25] Kawarada H, Yamada T, Xu D, Kitabayashi Y, Shibata M, Matsumura D, Kobayashi M, Saito T, Kudo T, Inaba M and Hiraiwa A 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, 483
[26] Zhang J F, Ren Z Y, Zhang J C, Zhang C F, Chen D Z, Xu S R, Li Y and Hao Y 2017 Jpn. J. Appl. Phys. 56 100301
[27] Ma X H, Zhu J J, Liao X Y, Yue T, Chen W W and Hao Y 2013 Appl. Phys. Lett. 103 033510
[28] Schroder D K 2006 Semiconductor Material and Device Characterization (New York: Wiley) p. 347
[29] Fu Y, Xu R M, Zhou J J, Yu X X, Wen Z, Kong Y C, Chen T S, Zhang Y, Yan B, He J J and Xu Y H 2019 IEEE Access. 7 76868
[30] Kordoš P, Stoklas R, Gregušová D and Novák J 2009 Appl. Phys. Lett. 94 223512
[31] Martens K, Wang W, De Keersmaecker K, Borghs G, Groeseneken G and Maes H 2007 Microelectronic Engineering 84 2146
[1] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[2] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[3] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[4] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰)†, Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), and Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[5] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[6] First-principles investigations of proton generation in α-quartz
Yunliang Yue(乐云亮), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2018, 27(3): 037102.
[7] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[8] Detailed study of NBTI characterization in 40-nm CMOS process using comprehensive models
Yan Zeng(曾严), Xiao-Jin Li(李小进), Jian Qing(卿健), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), Ao Guo(郭奥), Shao-Jian Hu(胡少坚). Chin. Phys. B, 2017, 26(10): 108503.
[9] Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high-k metal gate NMOSFET with kMC TDDB simulations
Hao Xu(徐昊), Hong Yang(杨红), Wei-Chun Luo(罗维春), Ye-Feng Xu(徐烨峰), Yan-Rong Wang(王艳蓉), Bo Tang(唐波), Wen-Wu Wang(王文武), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Jiang Yan(闫江), Hui-Long Zhu(朱慧珑), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087305.
[10] Characteristics of drain-modulated generation current in n-type metal-oxide-semiconductor field-effect transistor
Chen Hai-Feng (陈海峰), Guo Li-Xin (过立新), Zheng Pu-Yang (郑璞阳), Dong Zhao (董钊), Zhang Qian (张茜). Chin. Phys. B, 2015, 24(7): 078502.
[11] Interfacial and electrical characteristics of a HfO2/n-InAlAs MOS-capacitor with different dielectric thicknesses
Guan He (关赫), Lv Hong-Liang (吕红亮), Guo Hui (郭辉), Zhang Yi-Men (张义门), Zhang Yu-Ming (张玉明), Wu Li-Fan (武利翻). Chin. Phys. B, 2015, 24(12): 126701.
[12] Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET
Zhang Yue (张月), Zhuo Qing-Qing (卓青青), Liu Hong-Xia (刘红侠), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057304.
[13] Interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor structure by frequency dependent conductance technique
Liao Xue-Yang (廖雪阳), Zhang Kai (张凯), Zeng Chang (曾畅), Zheng Xue-Feng (郑雪峰), En Yun-Fei (恩云飞), Lai Ping (来萍), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057301.
[14] Gate-modulated generation–recombination current in n-type metal–oxide–semiconductor field-effect transistor
Chen Hai-Feng (陈海峰). Chin. Phys. B, 2014, 23(12): 128502.
[15] Impact of substrate injected hot electrons on hot carrier degradation in a 180-nm NMOSFET
Liang Bin (梁斌), Chen Jian-Jun (陈建军), Chi Ya-Qing (池雅庆). Chin. Phys. B, 2014, 23(11): 117304.
No Suggested Reading articles found!