Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057304    DOI: 10.1088/1674-1056/abdb1a
DATA PAPER Prev   Next  

High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states

Feng Lu(卢峰)1, Jintao Cui(崔锦韬)1, Pan Liu(刘盼)1, Meichen Lin(林玫辰)1, Yahui Cheng(程雅慧)1, Hui Liu(刘晖)1, Weichao Wang(王卫超)1, Kyeongjae Cho2, and Wei-Hua Wang(王维华)1,†
1 Department of Electronic Science and Engineering, and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Engineering Research Center of Thin Film Optoelectronics Technology(Ministry of Education), Nankai University, Tianjin 300350, China;
2 Department of Material Science and Engineering, the University of Texas at Dallas, Richardson, 75080, USA
Abstract  Low dimensional materials are suitable candidates applying in next-generation high-performance electronic, optoelectronic, and energy storage devices because of their uniquely physical and chemical properties. In particular, one-dimensional (1D) atomic wires (AWs) exfoliating from 1D van der Waals (vdW) bulks are more promising in next generation nanometer (nm) even sub-nm device applications owing to their width of few-atoms scale and free dandling bonds states. Although several 1D AWs have been experimentally prepared, few 1D AW candidates could be practically applied in devices owing to lack of enough suitable 1D AWs. Herein, 367 kinds of 1D AWs have been screened and the corresponding computational database including structures, electronic structures, magnetic states, and stabilities of these 1D AWs has been organized and established. Among these systems, unary and binary 1D AWs with relatively small exfoliation energy are thermodynamically stable and theoretically feasible to be exfoliated. More significantly, rich quantum states emerge, such as 1D semiconductors, 1D metals, 1D semimetals, and 1D magnetism. This database will offer an ideal platform to further explore exotic quantum states and exploit practical device applications using 1D materials. The database are openly available at http://www.dx.doi.org/10.11922/sciencedb.j00113.00004.
Keywords:  high-throughput calculation      one-dimensional atomic wires      electronic structure      first principles calculation  
Received:  04 December 2020      Revised:  09 January 2021      Accepted manuscript online:  13 January 2021
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0129000) and the National Natural Science Foundation of China (Grant Nos. 51871121, 11874223, and 11404172).
Corresponding Authors:  Wei-Hua Wang     E-mail:  whwangnk@nankai.edu.cn

Cite this article: 

Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华) High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states 2021 Chin. Phys. B 30 057304

[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[3] Yang C, Liu Z, Shi W and Zhang C 2019 Appl. Phys. Express 12 082009
[4] Jiang P, Tao X, Kang L, Hao H, Song L, Lan J, Zheng X, Zhang L and Zeng Z 2017 J. Mater. Chem. C 5 9066
[5] Liu P, Lu F, Wu M, Luo X, Cheng Y, Wang X, Wang W, Wang W H, Liu H and Cho K 2017 J. Mater. Chem. C 5 9066
[6] Wu M, Liu P, Xin B, Li L, Dong H, Cheng Y, Wang W, Lu F, Cho K, Wang W H and Liu H 2019 Appl. Phys. Lett. 114 171601
[7] Chen W, Qu Y, Yao L, Hou X, Shi X and Pan H 2018 J. Mater. Chem. A 6 8021
[8] Gong C, Kim E M, Wang Y, Lee G and Zhang X 2019 Nat. Commun. 10 2657
[9] Ma Xin, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803
[10] Song L, Zhang L, Guan Y, Lu J, Yan C and Cai J 2019 Chin. Phys. B 28 037101
[11] Ju S, Wu M, Yang H, Wang N, Zhang Y, Wu Peng, Wang P, Zhang B, Mu K, Li Y, Guan D, Qian D, Lu F, Liu D, Wang W H, Chen X and Sun Z 2018 Chin. Phys. Lett. 35 077102
[12] Xie Y, Feng J, Xiang H and Gong X 2019 Chin. Phys. Lett. 36 056801
[13] Pan B, Xiao J, Li J, Liu P, Wang C and Yang G 2015 Sci. Adv. 1 e1500857
[14] Li X, Lv H, Dai J, Ma L, Zeng X C, Wu X and Yang J 2017 J. Am. Chem. Soc. 139 6290
[15] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
[16] Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G and Crommie M F 2014 Nat. Mater. 13 1091
[17] Lee J, Schmitt F, Moore R, Johnston S, Cui Y T, Li W, Yi M, Liu Z, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245
[18] Yan H, Hohman J N, Li F H, Jia C, Solis-Ibarra D, Wu B, Dahl J, Carlson R, Tkachenko B A, Fokin A A, Schreiner P R,Vailions A, Kim T R, Devereaux T P, Shen Z X and Melosh N A 2017 Nat. Mater. 16 349
[19] Peierls R E 1955 Quantum theory of solids (Oxford: Clarendon)
[20] Liu M, Artyukhov V I and Yakobson B I 2017 J. Am. Chem. Soc. 139 2111
[21] Tomonaga S 1950 Prog. Theor. Phys. 5 544
[22] Luttinger J M 1963 J. Math. Phys. 4 1154
[23] Japaridze G I and Nersesyan A A 2019 Phys. Rev. B 99 035134
[24] Tang Z K, Zhang L, Wang N, Zhang X X, Wen G H, Li G D, Wang J N, Chan C T and Sheng P 2001 Science 292 2462
[25] Caruso F, Filip M R and Giustino F 2015 Phys. Rev. B 92 125134
[26] Lee W G, Chae S, Chung Y K, Oh S, Choi J Y and Huh J 2019 Phys. Status Solidi RRL 13 1800517
[27] Zhu H, Wang Q, Zhang C, Addou R, Cho K, Wallace R M and Kim M J 2017 Adv. Mater. 29 1606264
[28] Wan Y, Sun Y, Wu X and Yang J 2018 J. Phys. Chem. C 122 989
[29] Sen R and Johari P 2019 ACS Appl. Mater. Inter. 11 12733
[30] Zhang Z, Murayama T, Sadakane M, Ariga H, Yasuda N, Sakaguchi N, Asakura K and Ueda W 2015 Nat. Commun. 6 7731
[31] Peng B, Xu K, Zhang H, Ning Z, Shao H, Ni G, Li J, Zhu Y, Zhu H and Soukoulis C M 2018 Adv. Theory Simul. 1 1700005
[32] Gao Y and Xu B 2018 ACS Appl. Mater. Inter. 10 14221
[33] Liu Y, Huang Y and Duan X 2019 Nature 567 323
[34] Cheon G, Duerloo K N, Sendek A D, Porter C, Chen Y and Reed E J 2017 Nano Lett. 17 1915
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[38] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[39] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[40] Hellenbrandt M 2004 Crystallogr. Rev. 10 17
[41] Belsky A, Hellenbrandt M, Karen V L and Luksch P 2002 Acta Crystallogr. Sect. B Struct. Sci. 58 364
[42] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[43] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[44] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480
[45] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486
[46] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[47] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[48] Choudhary K, Kalish I, Beams R and Tavazza F 2017 Sci. Rep. 7 5179
[49] Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartus S P, Payton O D, Skipper N T, Tileli V and Howard C A 2019 Nature 568 216
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[14] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[15] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
No Suggested Reading articles found!