Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056801    DOI: 10.1088/1674-1056/abf10e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations

Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅)
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  With the diversified development of the battery industry, potassium-ion batteries (PIBs) have aroused widespread interest due to their safety and high potassium reserves on earth. However, the lack of suitable anode materials limits their development and application to a certain extent. Based on first-principles calculations, we investigate the possibility of using PC3 monolayer as the anode material for PIBs. PC3 sheet has excellent electrical properties and meets the prerequisite of anode materials. The storage capacity of potassium is as high as 1200 mAh·g-1, which is better than many other reported potassium-ion anode materials. In addition, the outstanding advantages of PC3 sheet, such as low diffusion barrier and moderate open-circuit voltage, make it a potential anode candidate for PIBs.
Keywords:  two-dimensional materials      potassium-ion batteries      first-principles  
Received:  06 January 2021      Revised:  03 March 2021      Accepted manuscript online:  23 March 2021
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  82.47.Cb (Lead-acid, nickel-metal hydride and other batteries)  
  71.20.Nr (Semiconductor compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574167 and 11874033) and the KC Wong Magna Foundation in Ningbo University.
Corresponding Authors:  Xiangmei Duan     E-mail:  duanxiangmei@nbu.edu.cn

Cite this article: 

Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅) Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations 2021 Chin. Phys. B 30 056801

[1] Liu Y Y, Merinov B V and Goddard W A 2016 Proc. Natl. Acad. Sci. USA 113 3735
[2] Bie X F, Kubota K, Hosaka T, Chihara K and Komaba S 2017 J. Mater. Chem. A 5 4325
[3] Yoo E J, Kim J, Hosono E, Zhou H S, Kudo T and Honma I 2008 Nano Lett. 8 2277
[4] Mayo M, Griffith K J, Pickard C J and Morris A J 2016 Chem. Mater. 28 2011
[5] Guo G C, Wang D, Wei X L, Zhang Q, Liu H, Lau W M and Liu L M 2015 J. Phys. Chem. Lett. 6 5002
[6] Wang T, Guo W, Wang G, Wang H, Bai J and Wang B B 2020 J. Alloy. Compd. 834 155265
[7] Sannyal A, Zhang Z Q, Gao X and Jang J 2018 Comp. Mater. Sci. 154 204
[8] Gong S, Zhang C, Wang S and Wang Q 2017 J. Phys. Chem. C 121 10258
[9] Shen Y P, Liu J, Li X Y and Wang Q 2019 ACS. Appl. Mater. Inter. 11 35661
[10] Zhao Z Y, Yu T, Zhang S T, Xu H Y, Yang G C and Liu Y C 2019 J. Mater. Chem. A 7 405
[11] Jana S, Thomasb S, Lee C H, Jun B and Lee S U 2019 Carbon 157 420
[12] Dou K Y, Ma Y D, Zhang T, Huang B B and Dai Y 2019 Phys. Chem. Chem. Phys. 21 26212
[13] Lv X S, Wei W, Huang B B and Dai Y 2019 J. Mater. Chem A. 7 2165
[14] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[15] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[18] Blöchl P E 1994 Phys. Rev. B 50 17953
[19] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[20] Ganguly R and Jevtovic V 2017 Acta. Crystallogr. 73 Pt 8
[21] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[22] Zhou L J, Hou Z F and Wu L M 2012 J. Phys. Chem. C 116 21780
[23] Kuzubov A A, Eliseeva N S, Krasnov P O, Tomilin F N, Fedorov A S and Lykhin A O 2012 J. Exp. Theor. Phys. 114 1018
[24] Zhang T, Ma Y D, Huang B B and Dai Y 2019 ACS Appl. Mater. Inter. 11 6104
[25] Sultana I, Rahman M M, Ramireddy T, Chen Y and Glushenkov A M 2017 J. Mater. Chem. A 5 23506
[26] Yang E, Ji H, Kim J, Kim H and Jung Y 2015 Phys. Chem. Chem. Phys. 17 5000
[27] Eames C and Islam M S 2014 J. Am. Chem. Soc. 136 16270
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!