Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056801    DOI: 10.1088/1674-1056/abf10e

Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations

Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅)
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  With the diversified development of the battery industry, potassium-ion batteries (PIBs) have aroused widespread interest due to their safety and high potassium reserves on earth. However, the lack of suitable anode materials limits their development and application to a certain extent. Based on first-principles calculations, we investigate the possibility of using PC3 monolayer as the anode material for PIBs. PC3 sheet has excellent electrical properties and meets the prerequisite of anode materials. The storage capacity of potassium is as high as 1200 mAh·g-1, which is better than many other reported potassium-ion anode materials. In addition, the outstanding advantages of PC3 sheet, such as low diffusion barrier and moderate open-circuit voltage, make it a potential anode candidate for PIBs.
Keywords:  two-dimensional materials      potassium-ion batteries      first-principles  
Received:  06 January 2021      Revised:  03 March 2021      Accepted manuscript online:  23 March 2021
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  82.47.Cb (Lead-acid, nickel-metal hydride and other batteries)  
  71.20.Nr (Semiconductor compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574167 and 11874033) and the KC Wong Magna Foundation in Ningbo University.
Corresponding Authors:  Xiangmei Duan     E-mail:

Cite this article: 

Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅) Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations 2021 Chin. Phys. B 30 056801

[1] Liu Y Y, Merinov B V and Goddard W A 2016 Proc. Natl. Acad. Sci. USA 113 3735
[2] Bie X F, Kubota K, Hosaka T, Chihara K and Komaba S 2017 J. Mater. Chem. A 5 4325
[3] Yoo E J, Kim J, Hosono E, Zhou H S, Kudo T and Honma I 2008 Nano Lett. 8 2277
[4] Mayo M, Griffith K J, Pickard C J and Morris A J 2016 Chem. Mater. 28 2011
[5] Guo G C, Wang D, Wei X L, Zhang Q, Liu H, Lau W M and Liu L M 2015 J. Phys. Chem. Lett. 6 5002
[6] Wang T, Guo W, Wang G, Wang H, Bai J and Wang B B 2020 J. Alloy. Compd. 834 155265
[7] Sannyal A, Zhang Z Q, Gao X and Jang J 2018 Comp. Mater. Sci. 154 204
[8] Gong S, Zhang C, Wang S and Wang Q 2017 J. Phys. Chem. C 121 10258
[9] Shen Y P, Liu J, Li X Y and Wang Q 2019 ACS. Appl. Mater. Inter. 11 35661
[10] Zhao Z Y, Yu T, Zhang S T, Xu H Y, Yang G C and Liu Y C 2019 J. Mater. Chem. A 7 405
[11] Jana S, Thomasb S, Lee C H, Jun B and Lee S U 2019 Carbon 157 420
[12] Dou K Y, Ma Y D, Zhang T, Huang B B and Dai Y 2019 Phys. Chem. Chem. Phys. 21 26212
[13] Lv X S, Wei W, Huang B B and Dai Y 2019 J. Mater. Chem A. 7 2165
[14] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[15] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[18] Blöchl P E 1994 Phys. Rev. B 50 17953
[19] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[20] Ganguly R and Jevtovic V 2017 Acta. Crystallogr. 73 Pt 8
[21] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[22] Zhou L J, Hou Z F and Wu L M 2012 J. Phys. Chem. C 116 21780
[23] Kuzubov A A, Eliseeva N S, Krasnov P O, Tomilin F N, Fedorov A S and Lykhin A O 2012 J. Exp. Theor. Phys. 114 1018
[24] Zhang T, Ma Y D, Huang B B and Dai Y 2019 ACS Appl. Mater. Inter. 11 6104
[25] Sultana I, Rahman M M, Ramireddy T, Chen Y and Glushenkov A M 2017 J. Mater. Chem. A 5 23506
[26] Yang E, Ji H, Kim J, Kim H and Jung Y 2015 Phys. Chem. Chem. Phys. 17 5000
[27] Eames C and Islam M S 2014 J. Am. Chem. Soc. 136 16270
[1] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[2] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[3] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[4] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[5] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[6] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[9] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[13] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
No Suggested Reading articles found!