Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050707    DOI: 10.1088/1674-1056/abd7d3
GENERAL Prev   Next  

A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field

Chang Chen(陈畅)1,2, Yi Zhang(张燚)1,2, Zhi-Guo Wang(汪之国)1,2,†, Qi-Yuan Jiang(江奇渊)1,2, Hui Luo(罗晖)1,2, and Kai-Yong Yang(杨开勇)1,2
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
Abstract  Alkali-metal atomic magnetometers employing longitudinal carrier magnetic field have ultrahigh sensitivity to measure transverse magnetic fields and have been applied in a variety of precise-measurement science and technologies. In practice, the magnetometer response is not rigorously proportional to the measured transverse magnetic fields and the existing fundamental analytical model of this magnetometer is effective only when the amplitudes of the measured fields are very small. In this paper, we present a modified analytical model to characterize the practical performance of the magnetometer more definitely. We find out how the longitudinal magnetization of the alkali metal atoms vary with larger transverse fields. The linear-response capacity of the magnetometer is determined by these factors: the amplitude and frequency of the longitudinal carrier field, longitudinal and transverse spin relaxation time of the alkali spins and rotation frequency of the transverse fields. We give a detailed and rigorous theoretical derivation by using the perturbation-iteration method and simulation experiments are conducted to verify the validity and correctness of the proposed modified model. This model can be helpful for measuring larger fields more accurately and configuring a desirable magnetometer with proper linear range.
Keywords:  alkali-metal atomic magnetometer      longitudinal carrier magnetic field      linear-response capacity  
Received:  09 November 2020      Revised:  18 December 2020      Accepted manuscript online:  04 January 2021
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the Hunan Graduate Research and Innovation Project (Grant No. CX2018B009), the Natural Science Foundation of Hunan (Grant No. 2018JJ3608), the Research Project of National University of Defense Technology (Grant Nos. ZK170204 and ZZKY-YX-07-02), and the National Natural Science Foundation of China (Grant Nos. 61671458 and 61701515).
Corresponding Authors:  Zhi-Guo Wang     E-mail:  maxborn@nudt.edu.cn

Cite this article: 

Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇) A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field 2021 Chin. Phys. B 30 050707

[1] Budker D and Romalis M V 2007 Nat. Phys. 3 227
[2] Seltzer S J 2008 Developments in Alkali-metal Atomic Magnetometry (Ph. D. Dissertation) (New Jersey: Princeton University)
[3] Bison G, Wynands R and Weis A 2003 Appl. Phys. B 76 325
[4] Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D and Pines A 2006 Proc. Natl. Acad. Sci. USA 103 12668
[5] Brown J M, Smullin S J, Kornack T W and Romalis M V 2010 Phys. Rev. Lett. 105 151604
[6] Savukov I M and Romalis M V 2005 Phys. Rev. Lett. 94 123001
[7] Cohen-Tannoudji C, Dupont-Roc J, Haroche S and Laloë F 1970 Rev. Phys. Appl. 5 95
[8] Cohen-Tannoudji C, Dupont-Roc J, Haroche S and Laloë F 1969 Phys. Rev. Lett. 22 758
[9] Grover B C 1978 Phys. Rev. Lett. 40 391
[10] Volk C H, Kwon T M and Mark J G 1980 Phys. Rev. A 21 1549
[11] Kanegsberg E 1978 Proc. SPIE 157 73
[12] Eklund E J 2008 Microgyroscope based on spin-polarized nuclei (Ph.D. Dissertation) (California: University of California, Irvine)
[13] Ding Z, Yuan J, Luo H and Long X 2017 Chin. Phys. B 26 093301
[14] Li Z, Wakai R T and Walker T G 2006 Appl. Phys. Lett. 89 134105
[15] Ding Z, Yuan J, Lu G, Li Y and Long X 2017 IEEE Photonics Journal 9 5300209
[16] Happer W 1972 Rev. Mod. Phys. 44 169
[17] Zhang D W, Xu Z Y, Zhou M and Xu X Y 2017 Chin. Phys. B 26 023201
[18] Fu Y and Yuan J 2019 Chin. Phys. B 28 098504
[19] Savukov I M and Romalis M V 2005 Phys. Rev. A 71 023405
[20] Chen C, Jiang Q, Wang Z, Zhang Y, Luo H and Yang K 2020 AIP Adv. 10 065303
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[7] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[8] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[9] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[13] Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明). Chin. Phys. B, 2022, 31(5): 050602.
[14] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[15] Effect of staggered array structure on the flow field of micro gas chromatographic column
Daohan Ge(葛道晗), Zhou Hu(胡州), Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(1): 010701.
No Suggested Reading articles found!