Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058202    DOI: 10.1088/1674-1056/abd46e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Unpinning the spiral waves by using parameter waves

Lu Peng(彭璐) and Jun Tang(唐军)
School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
Abstract  The spiral waves anchored to heterogeneous areas are more difficult to control and eliminate than freely rotating ones in homogenous mediums. To eliminate pinned spiral waves, the resistant force should be provided to resist the pinning force. Other than advection field, we introduce parametric wave to play the role of providing resistant force. It is found that the parametric wave with large enough amplitude and proper frequency can unpin and eliminate the spiral wave successfully. The capability of parametric wave in providing resistant force is dependent on its amplitude and frequency sensitively. On the basis of parametric wave, the dependence of pinning force on the size and level of heterogeneity is further confirmed.
Keywords:  pinned spiral wave      heterogeneity      pinning force  
Received:  07 October 2020      Revised:  10 November 2020      Accepted manuscript online:  17 December 2020
PACS:  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
  05.65.+b (Self-organized systems)  
  89.75.Kd (Patterns)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2020ZDPYMS33(JT)).
Corresponding Authors:  Jun Tang     E-mail:  tjuns1979@126.com

Cite this article: 

Lu Peng(彭璐) and Jun Tang(唐军) Unpinning the spiral waves by using parameter waves 2021 Chin. Phys. B 30 058202

[1] Roxin A, Riecke H and Solla S A 2004 Phys. Rev. Lett. 92 198101
[2] Sinha S, Saramäki J and Kaski K 2007 Phys. Rev. E 76 015101
[3] Qian Y, Zhang C, Wei Z, Liu F, Yao C and Zheng Z 2020 Europhys. Lett. 131 38002
[4] Qian Y, Zhang G, Wang Y, Yao C and Zheng Z 2019 Chaos 29 073106
[5] Lechleiter J, Girard S, Peralta E and Clapham D 1991 Science 252 123
[6] Lipp P and Niggli E 1993 Biophys. J. 65 2272
[7] Falcke M, Bär M, Lechleiter J D and Hudson J L 1999 Physica D 129 236
[8] Tang J, Yang L J, Ma J and Jia Y 2009 Eur. Biophys. J. 38 1061
[9] Tang J, Ma J, Yi M and Jia Y 2008 Chin. Phys. B 17 4100
[10] Keener J P and Tyson J J 1986 Physica D 31 307
[11] Li G, Ouyang Q, Petrov V and Swinney H L 1996 Phys. Rev. Lett. 77 2105
[12] Ji L, Zhou Y, Li Q, Qiao C and Ouyang Q 2013 Phys. Rev. E 88 042919
[13] Chen J X, Zhang H and Li Y Q 2006 J. Chem. Phys. 124 014505
[14] Li T C, Gao X, Zheng F F, Pan D B, Zheng B and Zhang H 2017 Sci. Rep. 7 8657
[15] Weiss J N, Chen P S, Qu Z, Karagueuzian H S and Garfinkel A 2000 Circ. Res. 87 1103
[16] Shajahan T K, Sinha S and Pandit R 2007 Phys. Rev. E 75 011929
[17] Shajahan T K, Nayak A R and Pandit R 2009 PLoS ONE 4 e4738
[18] Stamp A T, Osipov G V and Collins J J 2002 Chaos 12 931
[19] Cysyk J and Tung L 2008 Biophys. J. 94 1533
[20] Tang J, Yi M, Chen P, Luo J, Ma J and Xia H 2012 Europhys. Lett. 97 28003
[21] Weiss J N, Qu Z, Chen P S, Lin S F, Karagueuzian H S, Hayashi H, Garfinkel A and Karma A 2005 Circulation 112 1232
[22] Pertsov A M, Davidenko J M, Salomonsz R, Baxter W T and Jalife J 1993 Circ. Res. 72 631
[23] Weiss J N, Garfinkel A, Karagueuzian H S, Qu Z and Chen P S 1999 Circulation 99 2819
[24] Panfilov A V 1998 Chaos 8 57
[25] Falcke M, Or-Guil M and Bär M 2000 Phys. Rev. Lett. 84 4753
[26] Pazo D, Kramer L, Pumir A, Kanani S, Efimov I and Krinsky V 2004 Phys. Rev. Lett. 93 168303
[27] Biktashev V N, Barkley D and Biktasheva I V 2010 Phys. Rev. Lett. 104 058302
[28] Zemlin C W and Pertsov A M 2012 Phys. Rev. Lett. 109 038303
[29] Bittihn P, Squires A, Luther G, Bodenschatz E, Krinsky V, Parlitz U and Luther S 2010 Philos. Trans. R. Soc. A 368 2221
[30] Pumir A, Sinha S, Sridhar S, Argentina M, Hörning M, Filippi S, Cherubini C, Luther S and Krinsky V 2010 Phys. Rev. E 81 010901
[31] Cherubini C, Filippi S and Gizzi A 2012 Phys. Rev. E 85 031915
[32] Liu T B, Ma J, Zhao Q and Tang J 2013 Europhys. Lett. 104 58005
[33] Deng Y, Liu B Y, Wu T, Shangguan Y Y, Ma J and Tang J 2017 Europhys. Lett. 119 58002
[34] Barkley D 1994 Phys. Rev. Lett. 72 164
[35] Zhang J, Tang J, Ma J, Luo J M and Yang X Q 2018 Physica A 491 340
[1] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[2] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[3] Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles
Zhi-Sen Jiang(蒋之森), Shao-Feng Li(李少锋), Zheng-Rui Xu(许正瑞), Dennis Nordlund, Hendrik Ohldag, Piero Pianetta, Jun-Sik Lee, Feng Lin(林锋), Yi-Jin Liu(刘宜晋). Chin. Phys. B, 2020, 29(2): 026103.
[4] Nonperturbative effects of attraction on dynamical behaviors of glass-forming liquids
Xiaoyan Sun(孙晓燕), Haibo Zhang(张海波), Lijin Wang(王利近), Zexin Zhang(张泽新), and Yuqiang Ma(马余强)\ccclink. Chin. Phys. B, 2020, 29(12): 126201.
[5] Metabasin dynamics of supercooled polymer melt
Jian Li(李健), Bo-Kai Zhang(张博凯). Chin. Phys. B, 2019, 28(12): 126101.
[6] Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells
Ling Xiong(熊玲), Yanping Liu(刘艳平), Ruchuan Liu(刘如川), Wei Yuan(袁伟), Gao Wang(王高), Yi He(何益), Jianwei Shuai(帅建伟), Yang Jiao(焦阳), Xixiang Zhang(张溪祥), Weijing Han(韩伟静), Junle Qu(屈军乐), Liyu Liu(刘雳宇). Chin. Phys. B, 2019, 28(10): 108701.
[7] Entrainment range affected by the heterogeneity in the amplitude relaxation rate of suprachiasmatic nucleus neurons
Chang-Gui Gu(顾长贵), Ping Wang(王萍), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2019, 28(1): 018701.
[8] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[9] Effects of the planarity and heterogeneity of networks on evolutionary two-player games
Xu-Sheng Liu(刘旭升), Zhi-Xi Wu(吴枝喜), Jian-Yue Guan(关剑月). Chin. Phys. B, 2018, 27(12): 120203.
[10] The determinant factors for map resolutions obtained using CryoEM single particle imaging method
Yihua Wang(王义华), Daqi Yu(余大启), Qi Ouyang(欧阳颀), Haiguang Liu(刘海广). Chin. Phys. B, 2018, 27(12): 128702.
[11] Spatial heterogeneity in liquid-liquid phase transition
Yun-Rui Duan(段云瑞), Tao Li(李涛), Wei-Kang Wu(吴维康), Jie Li(李洁), Xu-Yan Zhou(周戌燕), Si-Da Liu(刘思达), Hui Li(李辉). Chin. Phys. B, 2017, 26(3): 036401.
[12] Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国). Chin. Phys. B, 2017, 26(1): 016102.
[13] Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review
J C Qiao(乔吉超), Q Wang, D Crespo, Y Yang(杨勇), J M Pelletier. Chin. Phys. B, 2017, 26(1): 016402.
[14] Dynamic feature analysis in bidirectional pedestrian flows
Xiao-Xia Yang(杨晓霞), Winnie Daamen, Serge Paul Hoogendoorn, Hai-Rong Dong(董海荣), Xiu-Ming Yao(姚秀明). Chin. Phys. B, 2016, 25(2): 028901.
[15] Dynamical behaviour of an epidemic on complex networks with population mobility
Zhang Hai-Feng(张海峰), Small Michael, Fu Xin-Chu(傅新楚), and Wang Bing-Hong(汪秉宏). Chin. Phys. B, 2009, 18(9): 3639-3646.
No Suggested Reading articles found!