Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048504    DOI: 10.1088/1674-1056/abd391
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs

Xi-Ming Chen(陈喜明)1,2, Bang-Bing Shi(石帮兵)2, Xuan Li(李轩)1,†, Huai-Yun Fan(范怀云)2, Chen-Zhan Li(李诚瞻)2, Xiao-Chuan Deng(邓小川)1, Hai-Hui Luo(罗海辉)2, Yu-Dong Wu(吴煜东)2, and Bo Zhang(张波)1
1 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou CRRC Times Semiconductor Company Ltd., Zhuzhou 412001, China
Abstract  In order to investigate the characteristics and mechanisms of subthreshold voltage hysteresis (∆ V th, sub) of 4H-SiC metal-oxide-semiconductor field-effect transistors (MOSFETs), 4H-SiC planar and trench MOSFETs and corresponding P-type planar and trench metal-oxide-semiconductor (MOS) capacitors are fabricated and characterized. Compared with planar MOSFEF, the trench MOSFET shows hardly larger ∆ V th, sub in wide temperature range from 25 °C to 300 °C. When operating temperature range is from 25 °C to 300 °C, the off-state negative V gs of planar and trench MOSFETs should be safely above -4 V and -2 V, respectively, to alleviate the effect of ∆ V th, sub on the normal operation. With the help of P-type planar and trench MOS capacitors, it is confirmed that the obvious ∆ V th, sub of 4H-SiC MOSFET originates from the high density of the hole interface traps between intrinsic Fermi energy level (E i) and valence band (E v). The maximum ∆ V th, sub of trench MOSFET is about twelve times larger than that of planar MOSFET, owing to higher density of interface states (D it) between E i and E v. These research results will be very helpful for the application of 4H-SiC MOSFET and the improvement of ∆ V th, sub of 4H-SiC MOSFET, especially in 4H-SiC trench MOSFET.
Keywords:  4H-SiC MOSFET      subthreshold voltage hysteresis      P-type MOS capacitor      density of interface states  
Received:  08 October 2020      Revised:  30 October 2020      Accepted manuscript online:  15 December 2020
PACS:  85.30.Tv (Field effect devices)  
  43.66.Ed (Auditory fatigue, temporary threshold shift)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  68.35.Dv (Composition, segregation; defects and impurities)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0903203), the National Natural Science Foundation of China (Grant No. 62004033), and China Postdoctoral Science Foundation (Grant No. 2020M683287).
Corresponding Authors:  Corresponding author. E-mail: andrew_xuanli@foxmail.com   

Cite this article: 

Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波) Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs 2021 Chin. Phys. B 30 048504

1 Chen Z, Yao Y, Boroyevich D, Ngo K D T, Mattavelli P and Rajashekara K 2014 IEEE Trans. Power Electron. 29 2307
2 She X, Huang A Q and Ozpineci B 2017 IEEE T. Ind. Electron. 64 8193
3 Fabre J, Ladoux P and Piton M 2015 IEEE Trans. Power Electron. 30 4079
4 Molin Q, Kanoun M, Raynaud C and Morel H 2018 Microelectron. Reliab. 88-90 656
5 Asllani B, Castellazzi A, Salvado O A, Fayyaz A, Morel H and Planson D 2019 IEEE International Reliability Physics Symposium, March 31-April 4, 2019, California, USA, pp. 1-6
6 Rescher G, Pobegen G, Aichinger T and Grasser T 2016 IEEE International Electron Devices Meeting, December 3-7, 2016, San Francisco, USA, pp. 10.8.1-10.8.4
7 Aichinger T, Rescher G and Pobegen G 2018 Microelectron. Reliab. 80 68
8 Unger C and Pfost M 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference, November 7-9, 2018, Nottingham, United Kingdom, pp. 1-5
9 Basler T, Heer D, Peters D, Aichinger T and Schoerner R International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, June 5-7, 2018, Nuernberg, Germany, pp. 1-7
10 Unger C and Pfost M 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs, May 13-17, 2018, Chicago, USA, pp. 48-51
11 Hamilton D P, Jennings M R, Perez-Tomas A, Russell S A O, Hindmarsh S A, Fisher C A and Mawby P A 2017 IEEE Trans. Power Electron. 32 7967
12 Cheng L, Agarwal A K, Dhar S, Ryu S H and Palmour J W 2012 J. Electron. Mater. 41 910
13 Chatty K, Banerjee S, Chow T P and Gutmann R J 2002 IEEE Electron. Dev. Lett. 23 330
14 Puschkarsky K, Grasser T, Aichinger T, Gustin W and Reisinger H 2019 IEEE T. Electron Dev. 66 4604
15 Rasinger F, Hauck M, Rescher G, Aichinger T, Weber H B, Krieger M and Pobegen G 2019 Appl. Phys. Lett. 115 152102
16 Puschkarsky K, Reisinger H, Aichinger T, Gustin W and Grasser T 2018 IEEE T. Dev. Mater. Res. 18 144
17 Yano H, Kanafuji N, Osawa A, Hatayama T and Fuyuki T 2015 IEEE T. Electron Dev. 62 324
18 Cooper J, J. A 1997 Phys. Status Solidi A 162 305
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[6] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[7] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[8] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[9] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[10] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[11] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[12] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[13] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[14] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[15] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
No Suggested Reading articles found!