Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044212    DOI: 10.1088/1674-1056/abf03a
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler

Huikai Xu(徐晖凯)1,†, Weiyang Liu(刘伟洋)2,†, Zhiyuan Li(李志远)1, Jiaxiu Han(韩佳秀)1, Jingning Zhang(张静宁)1, Kehuan Linghu(令狐克寰)1, Yongchao Li(李永超)1, Mo Chen(陈墨)1, Zhen Yang(杨真)1, Junhua Wang(王骏华)1, Teng Ma(马腾)1, Guangming Xue(薛光明)1,‡, Yirong Jin(金贻荣)1,¶, and Haifeng Yu(于海峰)1
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 2 Shenzhen Insititute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  High fidelity two-qubit gates are fundamental for scaling up the superconducting qubit number. We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength, and demonstrate the CZ gate using two different schemes, adiabatic and diabatic methods. The Clifford based randomized benchmarking (RB) method is used to assess and optimize the CZ gate fidelity. The fidelities of adiabatic and diabatic CZ gates are 99.53(8)% and 98.72(2)%, respectively. We also analyze the errors induced by the decoherence. Comparing to 30 ns duration time of adiabatic CZ gate, the duration time of diabatic CZ gate is 19 ns, revealing lower incoherence error rate $r'_{incoherent, int} = 0.0197(5)$ compared to $r_{incoherent, int} = 0.0223(3)$.
Keywords:  controlled-Z gates      high fidelity gates      tunable coupler  
Received:  29 December 2020      Revised:  04 February 2021      Accepted manuscript online:  19 March 2021
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.67.Lx (Quantum computation architectures and implementations)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
  85.25.Cp (Josephson devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11890704, 12004042, and 11674376), the Natural Science Foundation of Beijing, China (Grant No. Z190012), the National Key Research and Development Program of China (Grant No. 2016YFA0301800), and the Key-Area Research and Development Program of Guang-Dong Province, China (Grant No. 2018B030326001).
Corresponding Authors:  These authors contributed equally. Corresponding author. E-mail: xuegm@baqis.ac.cn §Corresponding author. E-mail: jinyr@baqis.ac.cn   

Cite this article: 

Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰) Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler 2021 Chin. Phys. B 30 044212

1 Arute F, Arya K, Babbush R, et al. \hrefhttp://doi.org/10.1038/s41586-019-1666-5 2019 Nature 574 505
2 Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
3 Barends R, Kelly J, Megrant A, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.111.080502 2013 Phys. Rev. Lett. 111 080502
4 Schuch N and Siewert J 2003 Phys. Rev. A 67 032301
5 Strauch F W, Johnson P R, Dragt A J, Lobb C J, Anderson J R and Wellstood F C 2003 Phys. Rev. Lett. 91 167005
6 DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M and Schoelkopf R J 2009 Nature 460 240
7 Yamamoto T, Neeley M, Lucero E, Bialczak R C, Kelly J, Lenander M, Mariantoni M, O'Connell A D, Sank D, Wang H, Weides M, Wenner J, Yin Y, Cleland A N and Martinis J M 2010 Phy. Rev. B 82 184515
8 Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature 508 500
9 Caldwell S A, Didier N, Ryan C A, et al. \hrefhttp://doi.org/10.1103/PhysRevApplied.10.034050 2018 Phys. Rev. Applied 10 034050
10 Rigetti C, Blais A and Devoret M 2005 Phys. Rev. Lett. 94 240502
11 Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R, Fink J M, Göppl M, Steffen L and Wallraff A 2009 Phys. Rev. B 79 180511
12 Hutchings M D, Hertzberg J B, Liu Y, Bronn N T, Keefe G A, Brink M, Chow J and Plourde B 2017 Phys. Rev. Applied 8 044003
13 Rigetti C and Devoret M 2010 Phys. Rev. B 81 134507
14 Chow J M, Còrcoles A D, Gambetta J M, Rigetti C, Johnson B R, Smolin J, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2011 Phys. Rev. Lett. 107 080502
15 Chow J M, Gambetta J M, Cross A W, Merkel S T, Rigetti C and Steffen M 2013 New J. Phys. 15 115012
16 Sheldon S, Magesan E, Chow J M and Gambetta J M 2016 Phys. Rev. A 93 060302
17 Poletto S, Gambetta J M, Merkel S T, Smolin J A, Chow J M, Còrcoles A D, Keefe G A, Rothwell M B, Rozen J R, Abraham D W, Rigetti C and Steffen M 2012 Phys. Rev. Lett. 109 240505
18 de Groot P C, Lisenfeld J, Schouten R N, Ashhab S, Lupascu A, Harmans C J P M and Mooij J E 2010 Nat. Phys. 6 763
19 de Groot P C, Ashhab S, Lupascu A, DiCarlo L, Nori F, Harmans C J P M and Mooij J E 2012 New J. Phys. 14 073038
20 Ganzhorn M, Salis G, Egger D J, Fuhrer A, Mergenthaler M, Müller C, Müller P, Paredes S, Pechal M, Werninghaus M and Filipp S 2020 Phys. Rev. Research 2 033447
21 Ashhab S, Matsuo S, Hatakenaka N and Nori F 2006 Phys. Rev. B 74 184504
22 Ashhab S and Nori F 2007 Phys. Rev. B 76 132513
23 Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O'Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N and Martinis J M 2014 Phys. Rev. Lett. 113 220502
24 Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D, Wang J, Orlando T P, Gustavsson S and Oliver W 2018 Phys. Rev. Applied 10 054062
25 Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F and Yu D 2020 Phys. Rev. Lett. 125 240503
26 Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L and Sun L 2020 Phys. Rev. Applied 14 024070
27 Han X, Cai T, Li X, Wu Y, Ma Y, Wang J, Zhang H, Song Y and Duan L 2020 Phys. Rev. A 102 022619
28 Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A, Eichler C 2020 Phys. Rev. Lett. 125 240502
29 McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M and Gambetta J M 2016 Phys. Rev. Applied 6 064007
30 Moll N, Barkoutsos P, Bishop L S, et al. \hrefhttp://doi.org/10.1088/2058-9565/aab822 2018 Quantum Sci. Technol. 3 030503
32 Rol M A, Battistel F, Malinowski F K, Bultink C C, Tarasinski B M, Vollmer R, Haider N, Muthusubramanian N, Bruno A, Terhal B M and DiCarlo L 2019 Phys. Rev. Lett. 123 120502
33 Li S, Castellano A D, Wang S, Wu Y, Gong M, Yan Z, Rong H, Deng H, Zha C, Guo C, Sun L, Peng C, Zhu X B and Pan J W 2019 npj Quantum Information 5 84
34 Barends R, Quintana C M, Petukhov A G, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.123.210501 2019 Phys. Rev. Lett. 123 210501
35 Foxen B, Neill C, Dunsworth A, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.125.120504 2020 Phys. Rev. Lett. 125 120504
36 McKay D C, Wood C J, Sheldon S, Chow J M and Gambetta J M 2017 Phys. Rev. A 96 022330
37 Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2008 Phys. Rev. A 77 012307
38 Kelly J, Barends R, Campbell B, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.112.240504 2014 Phys. Rev. Lett. 112 240504
39 Magesan E, Gambetta J M and Emerson J 2011 Phys. Rev. Lett. 106 180504
40 Magesan E, Gambetta J M, Johnson B R, Ryan C A, Chow J M, Merkel S T, da Silva M P, Keefe G A, Rothwell M B, Ohki T A, Ketchen M B and Steffen M 2012 Phys. Rev. Lett. 109 080505
41 O'Malley P J J, Kelly J, Barends R, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A G, Hoi I C, Jeffrey E, Megrant A, Mutus J, Neill C, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Korotkov A N, Cleland A N and Martinis J M 2015 Phys. Rev. Applied 3 044009
42 Wallman J, Granade C, Harper R and Flammia S T 2015 New J. Phys. 17 113020
43 Feng G, Wallman J J, Buonacorsi B, Cho F H, Park D K, Xin T, Lu D, Baugh J and Laflamme R 2016 Phys. Rev. Lett. 117 260501
44 Rol M A, Battistel F, Malinowski F K, Bultink C C, Tarasinski B M, Vollmer R, Haider N, Muthusubramanian N, Bruno A, Terhal B M and DiCarlo L 2019 Phys. Rev. Lett. 123 120502
[1] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[2] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[3] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[4] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
[5] Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system
Jing Wang(王婧) and Xue-Dong Tian(田雪冬). Chin. Phys. B, 2021, 30(10): 104211.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[10] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[11] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[12] All-optical switch and transistor based on coherent light-controlled single two-level atom coupling with two nanowires
Xin-Qin Zhang(张新琴), Xiu-Wen Xia(夏秀文), Jing-Ping Xu(许静平), Mu-Tian Cheng(程木田), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2019, 28(11): 114207.
[13] Tunable coupling between Xmon qubit and coplanar waveguide resonator
He-Kang Li(李贺康), Ke-Min Li(李科敏), Hang Dong(董航), Qiu-Jiang Guo(郭秋江), Wu-Xin Liu(刘武新), Zhan Wang(王战), Hao-Hua Wang(王浩华), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2019, 28(8): 080305.
[14] Nonlinear coherent perfect photon absorber in asymmetrical atom-nanowires coupling system
Xiuwen Xia(夏秀文), Xinqin Zhang(张新琴), Jingping Xu(许静平), Mutian Cheng(程木田), Yaping Yang(羊亚平). Chin. Phys. B, 2018, 27(11): 114205.
[15] Demonstration of quantum anti-Zeno effect with a single trapped ion
Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(9): 090305.
No Suggested Reading articles found!