Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036103    DOI: 10.1088/1674-1056/abccb3
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM

Li-Hua Mo(莫莉华)1,2, Bing Ye(叶兵)1,2,†, Jie Liu(刘杰)1,2,‡, Jie Luo(罗捷)1,2, You-Mei Sun(孙友梅)1,2, Chang Cai(蔡畅)1,2, Dong-Qing Li(李东青)1,2, Pei-Xiong Zhao(赵培雄)1,2, and Ze He(贺泽)1,2
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Three-dimensional integrated circuits (3D ICs) have entered into the mainstream due to their high performance, high integration, and low power consumption. When used in atmospheric environments, 3D ICs are irradiated inevitably by neutrons. In this paper, a 3D die-stacked SRAM device is constructed based on a real planar SRAM device. Then, the single event upsets (SEUs) caused by neutrons with different energies are studied by the Monte Carlo method. The SEU cross-sections for each die and for the whole three-layer die-stacked SRAM device is obtained for neutrons with energy ranging from 1 MeV to 1000 MeV. The results indicate that the variation trend of the SEU cross-section for every single die and for the entire die-stacked device is consistent, but the specific values are different. The SEU cross-section is shown to be dependent on the threshold of linear energy transfer ($\mathrmLET_\rm th$) and thickness of the sensitive volume ($\mathrmT_\rm sv$). The secondary particle distribution and energy deposition are analyzed, and the internal mechanism that is responsible for this difference is illustrated. Besides, the ratio and patterns of multiple bit upset (MBU) caused by neutrons with different energies are also presented. This work is helpful for the aerospace IC designers to understand the SEU mechanism of 3D ICs caused by neutrons irradiation.
Keywords:  neutron      three-dimension ICs      single event upset      multi-bit upset      Geant4  
Received:  02 September 2020      Revised:  11 November 2020      Accepted manuscript online:  23 November 2020
PACS:  61.82.Fk (Semiconductors)  
  61.80.Jh (Ion radiation effects)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12035019, 111690041, and 11675233) and the Project of Science and Technology on Analog Integrated Circuit Laboratory, China ((Grant No. 6142802WD201801).
Corresponding Authors:  Corresponding author. E-mail: yebing@impcas.ac.cn Corresponding author. E-mail: j.liu@impcas.ac.cn   

Cite this article: 

Li-Hua Mo(莫莉华), Bing Ye(叶兵), Jie Liu(刘杰), Jie Luo(罗捷), You-Mei Sun(孙友梅), Chang Cai(蔡畅), Dong-Qing Li(李东青), Pei-Xiong Zhao(赵培雄), and Ze He(贺泽) Neutron-induced single event upset simulation in Geant4 for three-dimensional die-stacked SRAM 2021 Chin. Phys. B 30 036103

1 Armstrong T W and Colborn B L 2001 Radiat. Meas. 33 229
2 K\"ohler J, Zeitlin C, Ehresmann B, Wimmer-Schweingruber R F, Hassler D M, Reitz G, Brinza D E, Weigle G, Appel J, B\"ottcher S, B\"ohm E, Burmeister S, Guo J, Martin C, Posner A, Rafkin S and Kortmann O 2014 J. Geophys. Res.-Planets 119 594
3 Matthi\"a D, Ehresmann B, Lohf H, K\"oler J, Zeitlin C, Appel J, Sato T, Slaba T, Martin C, Berger T, Boehm E, Boettcher S, Brinza D E, Burmeister S, Guo J, Hassler D M, Posner A, Rafkin S C R, Reitz G, Wilson J W and Wimmer-Schweingruber R F 2016 J. Space Weather Space Clim. 6 17
4 Taber A and Normand E 1993 IEEE Trans. Nucl. Sci. 40 120
5 Guenzer C S, Wolicki E A and Allas R G 1979 IEEE Trans. Nucl. Sci. 26 5048
6 Olsen J, Becher P E, Fynbo P B, Raaby P and Schultz J 1993 IEEE Trans. Nucl. Sci. 40 74
7 Ziegler J and Puchner H SER-history, trends, and challenges: A guide for designing with memory ICs (San Jose, CA: Cypress Semiconductor)
8 Ibe E, Taniguchi H, Yahagi Y, Shimbo K I and Toba T 2010 IEEE Trans. Electron Dev. 57 1527
9 Andreani C, Senesi R, Paccagnella A, Bagatin M, Gerardin S, Cazzaniga C, Frost C D, Picozza P, Gorini G, Mancini R and Sarno M 2018 AIP Adv. 8 025013
10 Kato T, Yamazaki T, Saito N and Matsuyama H 2019 IEEE Trans. Nucl. Sci. 66 1381
11 Lau J H Reliability of RoHS-Compliant 2D and 3D IC Interconnects (New York: McGraw Hill Education) p. 9
12 K De M, P De M, D Sabuncuoglu T, K Baert, E Beyne, Mertens R and C Van H ESA Round Table on Micro/Nano Technologies for Space(Leuven Belgium: ESTEC)
13 Gouker P M, Tyrrell B, D'Onofrio R, Wyatt P, Soares T, Hu W, Chen C, Schwank J R, Shaneyfelt M R and Blackmore E W 2011 IEEE Trans. Nucl. Sci. 58 2845
14 Cao X, Xiao L, Huo M, Wang T, Li A, Qi C and Wang J arXiv: 1608.01345
15 Wangyuan Zhang and Tao Li 2008 41st IEEE/ACM International Symposium on Microarchitecture, November 8, 2008, Lake Como, Italy, p. 435
16 Ye B, Mo L, Liu T, Jie L, Li D, Zhao P, Cai C, He Z, Sun Y, Hou M and Liu J 2019 Chin. Phys. B 29 026101
17 Agostinelli S, Allison J, Amako K al, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S and Barrand G 2003 Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 506 250
18 Se C A and Nm A Cypress Semiconductor 2146445 87123 505
19 Baumann R 2005 IEEE Des. & Test Comput. 22 258
20 Reed R A, Weller R A, Mendenhall M H, Lauenstein J M, Warren K M, Pellish J A, Schrimpf R D, Sierawski B D, Massengill L W, Dodd P E, Shanevfelt M R, Felix J A, Schwank J R, Haddad N K, Lawrence R K, Bowman J H and Conde K 2007 IEEE Trans. Nucl. Sci. 54 2312
21 Zhang Z, Lei Z, Tong T, Li X, Xi K, Peng C, Shi Q, He Y, Huang Y and En Y 2019 IEEE Trans. Nucl. Sci. 66 1368
22 Miller F, Weulersse C, Carri\'ere T, Guibbaud N, Morand S and Gaillard R 2013 IEEE Trans. Nucl. Sci. 60 2789
23 Li P, Guo W, Zhao Z and Zhang M 2015 CCF Conference on Computer Engineering and Technology, October 18, 2015, Berlin, Germany, p. 164
24 Kauppila J S, Kay W H, Haeffner T D, Rauch D L, Assis T R, Mahatme N N, Gaspard N J, Bhuva B L, Alles M L, Holman W T and Massengill L W 2015 IEEE Trans. Nucl. Sci. 62 2613
25 Hasanbegovic A and Aunet S 2016 IEEE Trans. Nucl. Sci. 63 2962
26 Chen R M, Diggins Z J, Mahatme N N, Wang L, Zhang E X, Chen Y P, Zhang H, Liu Y N, Narasimham B, Witulski A F, Bhuva B L and Fleetwood D M 2017 IEEE Trans. Nucl. Sci. 64 2122
27 Liu T, Liu J, Xi K, Zhang Z, He D, Ye B, Yin Y, Ji Q, Wang B, Luo J, Sun Y and Zhai P 2018 IEEE Trans. Nucl. Sci. 65 1119
28 Geng C, Liu J, Zhang Z G, Hou M D, Sun Y M, Xi K, Gu S, Duan J L, Yao H J, Mo D and Luo J 2013 Sci. China: Phys. Mech. Astron. 56 1120
29 Zebrev G and Galimov A2017 IEEE Trans. Nucl. Sci. 64 2129
30 Infantino A, Al\'ía R G and Brugger M 2017 IEEE Trans. Nucl. Sci. 64 596
31 Watanabe Y, Kodama A, Tukamoto Y and Nakashima H 2005 AIP Conference Proceedings, May 24, 2005, New York, USA, p. 1646
[1] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[2] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[3] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[4] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[5] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[6] A simple analytical model of laser direct-drive thin shell target implosion
Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚). Chin. Phys. B, 2022, 31(4): 045204.
[7] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[8] Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs
Shao-Hua Yang(杨少华), Zhan-Gang Zhang(张战刚), Zhi-Feng Lei(雷志锋), Yun Huang(黄云), Kai Xi(习凯), Song-Lin Wang(王松林), Tian-Jiao Liang(梁天骄), Teng Tong(童腾), Xiao-Hui Li(李晓辉), Chao Peng(彭超), Fu-Gen Wu(吴福根), and Bin Li(李斌). Chin. Phys. B, 2022, 31(12): 126103.
[9] First neutron Bragg-edge imaging experimental results at CSNS
Jie Chen(陈洁), Zhijian Tan(谭志坚), Weiqiang Liu(刘玮强), Sihao Deng(邓司浩), Shengxiang Wang(王声翔), Liyi Wang(王立毅), Haibiao Zheng(郑海彪), Huaile Lu(卢怀乐), Feiran Shen(沈斐然), Jiazheng Hao(郝嘉政), Xiaojuan Zhou(周晓娟), Jianrong Zhou(周健荣), Zhijia Sun(孙志嘉), Lunhua He(何伦华), and Tianjiao Liang(梁天骄). Chin. Phys. B, 2021, 30(9): 096106.
[10] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[11] Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate
Yi-Yan Yang(杨佚沿), Cheng-Min Zhang(张承民), Jian-Wei Zhang(张见微), and De-Hua Wang (王德华). Chin. Phys. B, 2021, 30(6): 068703.
[12] Ring artifacts correction based on the projection-field in neutron CT
Sheng-Xiang Wang(王声翔), Jie Chen(陈洁), Zhi-Jian Tan(谭志坚), Si-Hao Deng(邓司浩), Yao-Da Wu(吴耀达), Huai-Le Lu(卢怀乐), Shou-Ding Li(李守定), Wei-Chang Chen(陈卫昌), and Lun-Hua He(何伦华). Chin. Phys. B, 2021, 30(5): 050601.
[13] Influences of supply voltage on single event upsets and multiple-cell upsets in nanometer SRAM across a wide linear energy transfer range
Yin-Yong Luo(罗尹虹), Wei Chen(陈伟), Feng-Qi Zhang(张凤祁), and Tan Wang(王坦). Chin. Phys. B, 2021, 30(4): 048502.
[14] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[15] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
No Suggested Reading articles found!