Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034203    DOI: 10.1088/1674-1056/abd38d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modified scaling angular spectrum method for numerical simulation in long-distance propagation

Xiao-Yi Chen(陈晓义)1,2, Ya-Xuan Duan(段亚轩)1,†, Bin-Bin Xiang(项斌斌)3, Ming Li(李铭)1, and Zheng-Shang Da(达争尚)1
1 The Advanced Optical Instrument Research Department, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
Abstract  The angular method (AS) cannot be used in long-distance propagation because it produces severe numerical errors due to the sampling problem in the transfer function. Two ways can solve this problem in AS for long-distance propagation. One is zero-padding to make sure that the calculation window is wide enough, but it leads to a huge calculation burden. The other is a method called band-limited angular spectrum (BLAS), in which the transfer function is truncated and results in that the calculation accuracy decreases as the propagation distance increases. In this paper, a new method called modified scaling angular spectrum (MSAS) to solve the problem for long-distance propagation is proposed. A scaling factor is introduced in MSAS so that the sampling interval of the input plane can be adjusted arbitrarily unlike AS whose sampling interval is restricted by the detector's pixel size. The sampling interval of the input plane is larger than the detector's pixel size so the size of calculation window suitable for long-distance field propagation in the input plane is smaller than the size of the calculation window required by the zero-padding. Therefore, the method reduces the calculation redundancy and improves the calculation speed. The results from simulations and experiments show that MSAS has a good signal-to-noise ratio (SNR), and the calculation accuracy of MSAS is better than BLAS.
Keywords:  angular spectrum      diffraction      Fourier optics and signal process  
Received:  18 September 2020      Revised:  28 October 2020      Accepted manuscript online:  15 December 2020
PACS:  42.30.Kq (Fourier optics)  
  42.30.Rx (Phase retrieval)  
  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61705254) and the Key Research and Development Program of Shaanxi Province of China (Grant No. 2020GY-114).
Corresponding Authors:  Corresponding author. E-mail: duanyaxuan@opt.ac.cn   

Cite this article: 

Xiao-Yi Chen(陈晓义), Ya-Xuan Duan(段亚轩), Bin-Bin Xiang(项斌斌), Ming Li(李铭), and Zheng-Shang Da(达争尚) Modified scaling angular spectrum method for numerical simulation in long-distance propagation 2021 Chin. Phys. B 30 034203

1 Maiden A M and Rodenburg J M 2009 Ultramicroscopy 109 1256
2 Pedrini G, Osten W and Zhang Y 2005 Opt. Lett. 30 833
3 Pan A and Yao B 2019 Opt. Express 27 5433
4 Shi Y, Wang Y and Zhang S 2013 Chin. Phys. Lett. 30 054203
5 Li Z, Zhang J, Liu D and Wang X 2016 Chin. Phys. Lett. 33 024204
6 Xie Z, Ma H, Qi B, Ren G, Tan Y, He B, Zeng H and Jiang C 2015 Chin. Phys. Lett. 32 124203
7 Zhou P, Li Y, Liu S and Su Y 2019 Opt. Express 27 8958
8 Stockmar M, Cloetens P, Zanette I, Enders B, Dierolf M, Pfeiffer F and Thibault P 2013 Sci. Rep. 3 1927
9 Wang S, Meng X, Wang Y, Yin Y and Yang X 2019 Chin. Phys. B 28 084203
10 Ou X, Horstmeyer R, Yang C and Zheng G 2013 Opt. Lett. 38 4845
11 Samuel M and Andrew M 2018 Opt. Express 26 25471
12 Kreis T M, Adams M and Jueptner W P O 1997 SPIE Proc. 3098 224
13 Zhang F, Yamaguchi I and Yaroslavsky L P 2004 Opt. Lett. 29 1668
14 Yu L and Kim M K 2006 Opt. Lett. 31 897
15 Wang D, Zhao J, Zhang F, Pedrini G and Osten W 2008 Appl. Opt. 47 D12
16 Muffoletto R P, Tyler J M and Tohline J E 2007 Opt. Express 15 5631
17 Goodman J W2005 Introduction to Fourier Optics, 3nd edn. (Greenwood Village (Colorado): Roberts and Company Publishers) pp. 42-50
18 Shen F and Wang A 2006 Appl. Opt. 45 1102
19 Matsushima K and Shimobaba T 2009 Opt. Express 17 19662
20 Zhang W, Zhang H and Jin G 2020 Opt. Lett. 45 1543
21 Bluestein L 1970 IEEE Trans. Audio Electroacoust. 18 451
22 Restrepo J F and Garcia-Sucerquia J 2010 Appl. Opt. 49 6430
23 Hincapie D, Velasquez D and Garcia-Sucerquia J 2017 Opt. Lett. 42 5294
24 Shin S and Yu Y 2019 J. Korean Phys. Soc. 74 98
25 Li J, Peng Z and Fu Y 2007 Opt. Commun. 280 243
26 Xiao Y, Tang X, Qin Y, Peng H and Wang W 2012 J. Opt. Soc. Am. A 29 2415
27 Voelz D G and Roggemann M C 2009 Appl. Opt. 48 6132
28 Xiao Y, Tang X, Qin Y, Peng H and Wang W 2012 Opt. Lett. 37 4943
29 Veerman J A C, Rusch J J and Urbach H P 2005 J. Opt. Soc. Am. A 22 636
30 Stamnes J J 1989 J. Opt. Soc. Am. A 6 1330
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[3] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[4] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[5] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[6] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[7] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[8] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[9] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[10] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[11] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[12] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[13] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[14] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[15] Design of a novel correlative reflection electron microscope for in-situ real-time chemical analysis
Tian-Long Li(李天龙), Zheng Wei(魏征), and Wei-Shi Wan(万唯实). Chin. Phys. B, 2021, 30(12): 120702.
No Suggested Reading articles found!