Chin. Phys. B, 2021, Vol. 30(3): 030203    DOI: 10.1088/1674-1056/abc2b6
 GENERAL Prev   Next

Model predictive inverse method for recovering boundary conditions of two-dimensional ablation

Guang-Jun Wang(王广军)1,2, Ze-Hong Chen(陈泽弘)1, Guang-Xiang Zhang(章广祥)1, and Hong Chen(陈红)1,2,
1 School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China; 2 Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
Abstract  A model predictive inverse method (MPIM) is presented to estimate the time-and space-dependent heat flux on the ablated boundary and the ablation velocity of the two-dimensional ablation system. For the method, first of all, the relationship between the heat flux and the temperatures of the measurement points inside the ablation material is established by the predictive model based on an influence relationship matrix. Meanwhile, the estimation task is formulated as an inverse heat transfer problem (IHTP) with consideration of ablation, which is described by an objective function of the temperatures at the measurement point. Then, the rolling optimization is used to solve the IHTP to online estimate the unknown heat flux on the ablated boundary. Furthermore, the movement law of the ablated boundary is reconstructed according to the estimation of the boundary heat flux. The effects of the temperature measurement errors, the number of future time steps, and the arrangement of the measurement points on the estimation results are analyzed in numerical experiments. On the basis of the numerical results, the effectiveness of the presented method is clarified.
Keywords:  ablation      heat transfer      model predictive inverse method (MPIM)      boundary reconstruction
Received:  08 August 2020      Revised:  29 September 2020      Accepted manuscript online:  20 October 2020
 PACS: 02.30.Zz (Inverse problems) 44.10.+i (Heat conduction) 43.20.Ye (Measurement methods and instrumentation) 64.70.-p (Specific phase transitions)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51876010 and 51676019).
Corresponding Authors:  Corresponding author. E-mail: chenh@cqu.edu.cn

Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红) Model predictive inverse method for recovering boundary conditions of two-dimensional ablation 2021 Chin. Phys. B 30 030203

 1 Candane S R, Balaji C and Venkateshan S P 2007 J. Heat Transfer 129 9122 Tan C, Zhao L J, Chen M J, Cheng J, Yin Z Y, Liu Q, Yang H and Liao W 2020 Chin. Phys. B 29 0542093 Ferraiuolo M and Manca O 2012 Int. J. Therm. Sci. 53 564 Iqbal T, Abrar M, Tahir M B, Seemab M, Majid A and Rafique S 2018 Chin. Phys. B 27 0874015 Tsai D C and Hwang W S 2012 J. Cryst. Growth 343 456 Yan H, Yan J and Zhao G 2019 Chin. Phys. B 28 1144017 Niu C Y, Qi H, Huang X, Ruan L M, Wang W, Run L M and Tan H P 2015 Chin. Phys. B 24 1144018 Liu G N and Liu D 2018 Chin. Phys. B 27 0544019 Zhang L H, Tai B L, Wang G J, Zhang K B, Sullivan S and Shih A J 2013 Med. Eng. Phys. 35 139110 Zhang L H, Tai B L, Wang A C and Shih A J 2013 CIRP Ann.-Manuf. Techn. 62 36711 Cui K and Yang G W 2005 Chin. Phys. Lett. 22 273812 Wang Q H, Li Z H, Lai J C and He A Z 2007 Chin. Phys. Lett. 24 107613 Qin X 2018 Chin. Phys. B 27 10020314 Beck J V, Blackwell B and Charles R ST Clair J1985 Inverse Heat Conduction: Ill-Posed Problems (New York: John Wiley and Sons)15 Ozisik M N and Orlande H R B2000 Inverse heat transfer (New York: Taylor & Francis)16 Niu C Y, Qi H, Ren Y T and Ruan L M 2016 Chin. Phys. B 25 04780117 Sun S C 2021 Int. J. Therm. Sci. 163 10685318 Chen Z J and Zhang S Y 2010 Chin. Phys. Lett. 27 02650219 He Z Z, Liang D, Mao J K and Han X S 2018 Chin. Phys. B 27 05910120 Wang K, Wang G J, Chen H and Zhu L N 2014 Appl. Therm. Eng. 66 30921 Qiao Y B, Qi H, Zhao F Z and Ruan L M 2016 Chin. Phys. B 25 12020122 Wang Y and Zhao X F 2019 Chin. Phys. B 28 10430123 Vakili S and Gadala M S 2009 Heat Transfer, Part B: Fund. 56 11924 Sun S C, Wang G J, Chen H and Zhang D Q 2019 Int. J. Heat Mass Transfer 134 57425 Tapaswini S, Chakraverty S and Behera D 2015 Chin. Phys. B 24 05020326 Sun S C, Wang G J and Chen H 2020 Chin. Phys. B in press27 de Oliveira A P and Orlande H R B 2002 Inverse Problems in Engineering Mechanics III, 2002, Nagano, Japan, p. 3928 Molavi H, Hakkaki-Fard A, Molavi M, Rahmani R K, Ayasoufi A and Noori S 2011 Int. J. Heat Mass Transfer 54 103029 Mohammadiun M, Molavi H, Bahrami H R T and Mohammadiun H 2013 Heat Transfer Eng. 35 93330 Farzan H, Loulou T and Sarvari S M H 2017 J. Mech. Sci. Technol. 31 396931 Cross P G and Boyd I D 2017 J. Spacecraft Rockets 54 21232 Wang G J, Lv C, Chen H, Wan S B and Zhang D Q 2018 Int. J. Heat Mass Transfer 118 84733 Li Y H, Wang G J and Chen H 2015 Appl. Therm. Eng. 80 39634 Li Y H, Wang G J and Chen H 2015 Int. J. Therm. Sci. 88 14835 Petrushevsky V and Cohen S 1999 J. Heat Transfer 121 70836 Katte S S, Das S K and Venkateshan S P 2000 J. Thermophys. Heat Transfer 14 54837 Hunter L W, Perini L L, Conn D W and Brenza P T 1986 J. Spacecraft Rockets 23 48738 Blom F J 2000 Int. J. Numer. Meth. Fl. 32 64739 Bottasso C L, Detomi D and Serra R 2005 Comput. Method. Appl. M. 194 424440 Camacho E F and Bordons C2007 Model Predictive Control(London: Springer-Verlag)41 Hafid M and Lacroix M 2017 Appl. Therm. Eng. 110 26542 Woodbury K A and Thakur S K 1996 Inverse Probl. Sci. En. 2 319
 [1] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703. [2] Design and optimization of nano-antenna for thermal ablation of liver cancer cells Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401. [3] Anti-parity-time symmetric phase transition in diffusive systems Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505. [4] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103. [5] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)\$. Chin. Phys. B, 2020, 29(11): 110202. [6] Uniformity principle of temperature difference field in heat transfer optimization Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402. [7] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401. [8] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401. [9] Characterization of ion irradiated silicon surfaces ablated by laser-induced breakdown spectroscopy T Iqbal, M Abrar, M B Tahir, M Seemab, A Majid, S Rafique. Chin. Phys. B, 2018, 27(8): 087401. [10] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901. [11] Three-dimensional human thermoregulation model based on pulsatile blood flow and heating mechanism Si-Na Dang(党思娜), Hong-Jun Xue(薛红军), Xiao-Yan Zhang(张晓燕), Jue Qu(瞿珏), Cheng-Wen Zhong(钟诚文), Si-Yu Chen(陈思宇). Chin. Phys. B, 2018, 27(11): 114402. [12] Heat transfer enhancement in MOSFET mounted on different FR4 substrates by thermal transient measurement Norazlina M S, Dheepan Chakravarthii M K, Shanmugan S, Mutharasu D, Shahrom Mahmud. Chin. Phys. B, 2017, 26(9): 098901. [13] Tungsten ion source under double-pulse laser ablation system Ahmed Asaad I Khalil, Ashraf I Hafez, Mahmoud E Elgohary, Mohamed A Morsy. Chin. Phys. B, 2017, 26(9): 095201. [14] Role of entropy generation minimization in thermal optimization Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505. [15] Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects Tanzila Hayat, S Nadeem. Chin. Phys. B, 2016, 25(11): 114701.