Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038203    DOI: 10.1088/1674-1056/abd763
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery

Qi Liu(刘琦)†, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣)
1 Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  Choosing suitable solvent is the key technology for the electrochemical performance of energy storage device. Among them, vinylene carbonate (VC), fluoroethylene carbonate (FEC), and ethylene sulfite (ES) are the potential organic electrolyte solvents for lithium/sodium battery. However, the quantitative relation and the specific mechanism of these solvents are currently unclear. In this work, density functional theory (DFT) method is employed to study the lithium/sodium ion solvation in solvents of VC, ES, and FEC. We first find that 4VC-Li + , 4VC-Na + , 4ES-Li + , 4ES-Na + , 4FEC-Li + , and 4FEC-Na + are the maximum thermodynamic stable solvation complexes. Besides, it is indicated that the innermost solvation shells are consisted of 5VC-Li+ /Na + , 5ES-Li + /Na + , and 5FEC-Li + /Na + . It is also indicated that the Li + solvation complexes are more stable than Na + complexes. Moreover, infrared and Raman spectrum analysis indicates that the stretching vibration of O=\,C peak evidently shifts to high frequency with the Li + /Na + concentration reducing in nVC-Li + /Na + and nFEC-Li + /Na + solvation complexes, and the O=\,C vibration peak frequency in Na + solvation complexes is higher than that of Li + complexes. The S=\,O stretching vibration in nES-Li + /Na + solvation complexes moves to high frequency with the decrease of the Li + /Na + concentration, the S=\,O vibration in nES-Na + is higher than that in nES-Li + . The study is meaningful for the design of new-type Li/Na battery electrolytes.
Keywords:  elelctrolyte      solvation      lithium ion battery      sodium ion battery  
Received:  26 October 2020      Revised:  08 December 2020      Accepted manuscript online:  30 December 2020
PACS:  82.20.Yn (Solvent effects on reactivity)  
  82.45.Gj (Electrolytes)  
  82.47.Aa (Lithium-ion batteries)  
Fund: Project supported by the International Science & Technology Cooperation of China (Grant No. 2016YFE0102200), the National Natural Science Foundation of China (Grant No. 51902024), the Fundamental Research Funds for the Central Universities, China, the National Postdoctoral Program for Innovative Talents of China (Grant No. BX20180038), China Postdoctoral Science Foundation (Grant No. 2019M650014), and Beijing Natural Science Foundation, China (Grant No. L182022).
Corresponding Authors:  Corresponding author. E-mail: liuqi985@bit.edu.cn   

Cite this article: 

Qi Liu(刘琦, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣) DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery 2021 Chin. Phys. B 30 038203

1 Goodenough J B and Park K 2013 J. Am. Chem. Soc. 135 1167
2 Schmuch R, Wagner R, Horpel G, Placke T and Winter M 2018 Nat. Energy 3 267
3 Huang L X, Chen Y F, Li P J, Huan R, He J R, Wang Z G, Hao X, Liu J B, Zhang W L and Li Y R 2012 Acta Phys. Sin. 61 156103 (in Chinese)
4 Bai Y, Wang B and Zhang W F2011 Acta Phys. Sin. 60 068202 (in Chinese)
5 Yang Z, Zhang J, Kintnermeyer M C, Lu X, Choi D, Lemmon J P and Liu J 2011 Chem. Rev. 111 3577
6 Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636
7 Hwang J Y, Myung S and Sun Y 2017 Chem. Soc. Rev. 46 3529
8 Xu K 2014 Chem. Rev. 114 11503
9 Liu Q, Xu H, Wu F, Mu D, Shi L, Wang L, Bi J and Wu B 2019 ACS Appl. Energy Mater. 2 8878
10 Ponrouch A, Monti D, Boschin A, Steen B, Johansson P and Palacin M R2015 J. Mater. Chem. 3 22
11 Wang Y and Balbuena P B 2005 Int. J. Quantum Chem. 102 724
12 Zhang S, Li W J, Ling S G, Li H, Zhou Z B and Chen L Q 2015 Chin. Phys. B 24 078201
13 Delpa S A, Borodina O, Olguina M, Eisnerb C G, Allena J L T and Jow R 2016 Electrochim. Acta 209 498
14 Zhang Y, Krishnamurthy D and Viswanathan V 2020 J. Electrochem. Soc. 167 070554
15 Liu Q, Mu D, Wu B, Wang L, Gai L and Wu F 2017 ChemSusChem 10 786
16 Shigenobu K, Dokko K, Watanabe M and Ueno K 2020 Phys. Chem. Chem. Phys. 22 15214
17 Qian Y, Niehoff P, Borner M, Grutzke M, Monnighoff X, Behrends P, Nowak S, Winter M and Schappacher F M 2016 J. Power Sources 329 31
18 Heine J, Hilbig P, Qi X, Niehoff P, Winter M and Bieker P2015 J. Electrochem. Soc. 162 A1094
19 Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S, Klose M, Stephani G, Hauser R, Eckert J and Giebeler L2017 Energy Storage Mater. 6 26
20 Zhang B, Metzger M, Solchenbach S, Payne M, Meini S, Gasteiger H A, Garsuch A and Lucht B L 2015 J. Phys. Chem. C 119 11337
21 Zhu Z, Tang Y, Lv Z, Wei J, Zhang Y, Wang R, Zhang W, Xia H, Ge M and Chen X 2018 Angew. Chem. Int. Edit. 57 3656
22 Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A and Ohsawa Y 2011 ACS Appl. Mater. Inter. 3 4165
23 Ji L, Gu M, Shao Y, Li X, Engelhard M H, Arey B W, Wang W, Nie Z, Xiao J, Wang C, Zhang J G and Liu J 2014 Adv. Mater. 26 2901
24 Takenaka N, Sakai H, Suzuki Y, Uppula P and Nagaoka M 2015 J. Phys. Chem. C 119 18046
25 Lee Y, Lee J, Kim H, Kang K and Choi N 2016 J. Power Sources 320 49
26 Liu Q, Yang G, Liu S, Han M, Wang Z and Chen L 2019 ACS Appl. Mater. Interfaces 11 17435
27 Wang Z, Hofmann A and Hanemann T 2019 Electrochim. Acta 298 960
28 Brown Z L, Jurng S, Nguyen C C and Lucht B L 2018 ACS Appl. Energy Mater. 1 3057
29 Lee Y, Lee J, Lee J, Kim K, Cha A, Kang S, Wi T, Kang S J, Lee H and Choi N 2018 ACS Appl. Mater. Interfaces 10 15270
30 Men F, Zhong H, Song Z and Zhan H 2018 Mater. Chem. Phys. 212 131
31 Jote B A, Beyene T T, Sahalie N A, Weret M A, Olbassa B W, Wondimkun Z T, Berhe G B, Huang C, Su W and Hwang B J 2020 J. Power Sources 461 228102
32 Liu J, Zhou L, Yu W and Yu A 2020 J. Alloy Compd. 812 152064
33 Lin S and Zhao J 2020 ACS Appl. Mater. Interfaces 12 8316
34 Zeng G, Liu Y, Gu C, Zhang K, An Y, Wei C, Feng J and Ni J2020 Acta Phys. -Chim. Sin. 36 1905006
35 Zeng G, An Y, Xiong S and Feng J 2019 ACS Appl. Mater. Interfaces 11 23229
36 Rodriguez R, Loeffler K E, Nathan S S, Sheavly J K, Dolocan A, Heller A and Mullins C B 2017 ACS Energy Lett. 2 2051
37 Kuratani K, Uemura N, Senoh H, Takeshita H T and Kiyobayashi T 2013 J. Power Sources 223 175
38 Kuratani K, Kishimoto I, Nishida Y, Kondo R, Takeshita H T, Senoh H and Kiyobayashi T2016 J. Electrochem. Soc. 163 H417
39 Zhang Q, Liu S, Lin Z, Wang K, Chen M, Xu K and Li W 2020 Nano Energy 74 104860
40 Jin Y, Kneusels N H, Marbella L E, Castillo-Mart\'inez E, Magusin P C M M, Weatherup R S, Jonsson E, Liu T, Paul S and Grey C P 2018 J. Am. Chem. Soc. 140 9854
41 Zhang F, Wang C, Zhao D, Yang L, Wang P, Li W, Wang B and Li S 2020 Electrochim. Acta 337 135727
42 Wu C, Liao C, Li L and Yang J 2016 Chinese Chem. Lett. 27 1485
43 Zhang S, Yang G, Liu S, Li X, Wang X, Wang Z and Chen L 2020 Nano Energy 70 104486
44 Yang G, Li Y, Liu S, Zhang S, Wang Z and Chen L2019 Energy Storage Mater. 23 350
45 Wang Y and Balbuena P B 2005 Int. J. Quant. Chem. 102 724
46 Liu Q, Mu D, Wu B, Xu H, Wang L, Gai L, Shi L and Wu F2017 J. Electrochem. Soc. 164 A3144
47 Kang S, Park M H, Lee H and Han Y 2012 Electrochem. Commun. 23 83
48 Borodin O, Behl W and Jow T R 2013 J. Phys. Chem. C 117 8661
49 Zhang X, Pugh J K and Ross P N2001 J. Electrochem. Soc. 148 E183
50 Liu Q, Wu F, Mu D and Wu B 2020 Phys. Chem. Chem. Phys. 22 2164
51 Liu Q, Wu F, Mu D and Wu B. 2020 Chin. Phys. B 29 048202
52 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A et al.Petersson G A 2010 Gaussian 09, Gaussian, Inc., Wallingford, CT
53 Bolimowska E, Castiglione F, Devemy J, Rouault H, Mele A, Padua A A H and Santini C C 2018 J. Phys. Chem. B 122 8560
54 Hongyou K, Hattori T, Nagai Y, Tanaka T, Nii H and Shoda K 2013 J. Power Sources 243 72
[1] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[2] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[3] A simulation study of water property changes using geometrical alteration in SPC/E
Ming-Ru Li(李明儒), Nan Zhang(张楠), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(8): 083103.
[4] Performance of n-type silicon/silver composite anode material in lithium ion batteries: A study on effect of work function matching degree
Guo-Jun Xu(徐国军), Chen-Xin Jin(金晨鑫), Kai-Jie Kong(孔凯捷), Xi-Xi Yang(杨西西), Zhi-Hao Yue(岳之浩), Xiao-Min Li(李晓敏), Fu-Gen Sun(孙福根), Hai-Bin Huang(黄海宾), Lang Zhou(周浪). Chin. Phys. B, 2018, 27(10): 108201.
[5] Gas treatment protection of metallic lithium anode
Wen-jun Li(李文俊), Quan Li(李泉), Jie Huang(黄杰), Jia-yue Peng(彭佳悦), Geng Chu(褚赓), Ya-xiang Lu(陆雅翔), Jie-yun Zheng(郑杰允), Hong Li(李泓). Chin. Phys. B, 2017, 26(8): 088202.
[6] Conductivity and applications of Li-biphenyl-1, 2-dimethoxyethane solution for lithium ion batteries
Geng Chu(褚赓), Bo-Nan Liu(刘柏男), Fei Luo(罗飞), Wen-Jun Li(李文俊), Hao Lu(陆浩), Li-Quan Chen(陈立泉), Hong Li(李泓). Chin. Phys. B, 2017, 26(7): 078201.
[7] Instability of lithium bis(fluorosulfonyl)imide (LiFSI)–potassium bis(fluorosulfonyl)imide (KFSI) system with LiCoO2 at high voltage
Zhang Shu (张舒), Li Wen-Jun (李文俊), Ling Shi-Gang (凌仕刚), Li Hong (李泓), Zhou Zhi-Bin (周志彬), Chen Li-Quan (陈立泉). Chin. Phys. B, 2015, 24(7): 078201.
[8] First-principle study on phase Al0.8Ni3Sn0.2 in Sn-Ni-Al alloy as anode for lithium ion battery
Huang Zhao-Wen(黄钊文), Hu She-Jun(胡社军), Hou Xian-Hua(侯贤华), Zhao Ling-Zhi(赵灵智), Ru Qiang(汝强),Li Wei-Shan(李伟善), and Zhang Zhi-Wen(张志文). Chin. Phys. B, 2010, 19(11): 117101.
[9] Rapid internal conversion in a symmetric molecule LD 700 studied by means of femtosecond fluorescence depletion
Guo Xun-Min(郭逊敏), Wan Yan(宛岩), Xia An-Dong(夏安东), Wang Su-Fan(王素凡), Liu Jian-Yong(刘建勇), and Han Ke-Li(韩克利). Chin. Phys. B, 2009, 18(1): 142-148.
[10] First-principles study of interphase Ni3Sn in Sn--Ni alloy for anode of lithium ion battery
Hou Xian-Hua(侯贤华), Hu She-Jun(胡社军), Li Wei-Shan(李伟善), Ru Qiang(汝强), Yu Hong-Wen(余洪文), and Huang Zhao-Wen(黄钊文). Chin. Phys. B, 2008, 17(9): 3422-3427.
No Suggested Reading articles found!