Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 037303    DOI: 10.1088/1674-1056/abd46b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode

Zhiwei Huang(黄志伟)1, Shaoying Ke(柯少颖)1, Jinrong Zhou(周锦荣) 1, Yimo Zhao(赵一默) 2, Wei Huang(黄巍) 2, Songyan Chen(陈松岩) 2, and Cheng Li(李成)2,
1 College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China; 2 College of Physics Science and Technology, Xiamen University, Xiamen 361005, China
Abstract  A near-infrared germanium (Ge) Schottky photodetector (PD) with an ultrathin silicon (Si) barrier enhancement layer between the indium-doped tin oxide (ITO) electrode and Ge epilayer on Si or silicon-on-insulator (SOI) is proposed and fabricated. The well-behaved ITO/Si cap/Ge Schottky junctions without intentional doping process for the Ge epilayer are formed on the Si and SOI substrates. The Si-and SOI-based ITO/Si cap/Ge Schottky PDs exhibit low dark current densities of 33 mA/cm2 and 44 mA/cm2, respectively. Benefited from the high transmissivity of ITO electrode and the reflectivity of SOI substrate, an optical responsivity of 0.19 A/W at 1550 nm wavelength is obtained for the SOI-based ITO/Si cap/Ge Schottky PD. These complementary metal-oxide-semiconductor (CMOS) compatible Si (or SOI)-based ITO/Si cap/Ge Schottky PDs are quite useful for detecting near-infrared wavelengths with high efficiency.
Keywords:  silicon-based Schottky photodetector      germanium epilayer      indium-doped tin oxide  
Received:  10 October 2020      Revised:  28 November 2020      Accepted manuscript online:  17 December 2020
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  81.05.Cy (Elemental semiconductors)  
  85.30.-z (Semiconductor devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200103), the National Natural Science Foundation of China (Grant No. 61474094), and Principal Fund of Minnan Normal University (Grant No. KJ2020006).
Corresponding Authors:  Corresponding author. E-mail: lich@xmu.edu.cn   

Cite this article: 

Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成) High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode 2021 Chin. Phys. B 30 037303

1 David A and Fellow I 2009 Proc. IEEE 97 1166
2 Taubenblatt M A 2012 J. Lightwave Technol. 30 448
3 Zang H J, Kim G S, Park G J, Choi Y S and Yu H Y 2016 Opt. Lett. 41 3686
4 Lin Y, Lee K H, Bao S, Guo X, Wang H, Michel J and Tan C S 2017 Photonics Res. 5 702
5 Li C, Xue C, Li Y, Li C, Cheng B and Wang Q 2015 Chin. Phys. B 24 038502
6 Chen G, Yu Y, Deng S, Liu L and Zhang X 2015 Opt. Express 23 25700
7 Dushaq G, Nayfeh A and Rasras M 2017 Opt. Express 25 32110
8 Otuonye U, Kim H W and Lu W D 2017 Appl. Phys. Lett. 110 173104
9 Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann J M, Crozat p, Cassan E, Kopp C, Zimmermann H and F\'ed\'eli J M 2012 Opt. Express 20 1096
10 Sandeep K, Avijit C, Kumar S and Sushobhan A 2020 IEEE Sens. J. 20 4660
11 Li B and Shao J 2012 Acta Phys. Sin 61 077301 (in Chinese)
12 Sang L, Qin Z, Cen L, Shen B, Zhang G, LI S, Chen H, Liu D, Kang J, Cheng C, Zhao H, Lu Z, Ding J, Zhao L, Si J and Sun W 2008 Chin. Phys. Lett. 25 258
13 Kang Y, Li X, Fang J, He Z and Tang Y 2006 Chin. Phys. B 15 1325
14 Huang Y, Yeh P, Huang Y, Chen Y, Huang C, Lin C and Yeh W 2015 IEEE Photonics Technol. Lett. 28 605
15 Lee H Y, Su C T, Wu B K, Xu W L, Lin Y J and Chern M Y 2011 Jpn. J. Appl. Phys. 50 088004
16 Kim H, Hong S H, Yun C P, Lee J, Jeon C H and Kim J 2014 Mater. Lett. 115 45
17 Kim H S, Kumar M D, Patel M and Kim J 2016 Sens. & Act. A Phys. 252 35
18 Huang Z, Mao Y, Lin G, Yi X, Chang A, Li C, Chen S, Huang W and Wang J 2018 Opt. Express 26 5827
19 Yun J H, Kumar M D, Patel M, Park Y C, Kim B S and Kim J 2016 Mater. Sci. Semicond. Process 48 95
20 Huang Z, Yu C, Chang A, Zhao Y, Huang W, Chen S and Li C 2020 J. Mater. Sci. 55 8630
21 Huang Z, Mao Y, Lin G, Wang Y, Li C, Chen S, Huang W and Xu J 2017 Mater. Sci. Eng. B 224 103
22 Takenaka M, Morii K, Sugiyama M, Nakano Y and Takagi S 2012 Opt. Express 20 8718
23 Hyun-Yong Y, Shen R, Shik J, Okyay A K, Miller D A and Saraswat K C 2009 IEEE Electron. Device Lett. 30 1161
24 Huang Z, Mao Y, Chang A, Hong H, Li C, Chen S, Huang W and Wang J 2018 Appl. Phys. Express 11 102203
25 Li C, Xue C, Liu Z, Cheng B, Li C and Wang Q 2013 IEEE Trans. Electron Devices 60 1183
26 Giovane L M, Luan H C, Agarwal A M and Kimerling L C 2001 Appl. Phys. Lett. 78 541
27 Colace L, Assanto G, Fulgoni D and Nash L 2008 J. Lightwave. Technol. 26 2954
28 Sze S M and Ng K K2008 Physics of semiconductor devices, 3rd edn. (Xi'an: Xian Jiaotong University Press) pp. 501-502 (in Chinese)
29 Ishikawa Y and Wada K 2010 Thin Solid Films 518 S83
[1] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[2] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[3] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[4] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[5] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[6] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[7] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[8] Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate
Xu-Long Chu(褚旭龙), Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Yuan-Yuan Liu(刘媛媛), Shao-Hui Zhang(张少辉), Chao Wu(吴超), Ang Gao(高昂), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(1): 017302.
[9] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[10] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[11] Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3
Chao Yang(杨超), Hongwei Liang(梁红伟), Zhenzhong Zhang(张振中), Xiaochuan Xia(夏晓川), Heqiu Zhang(张贺秋), Rensheng Shen(申人升), Yingmin Luo(骆英民), Guotong Du(杜国同). Chin. Phys. B, 2019, 28(4): 048502.
[12] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[13] Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes
Xue-Qian Zhong(仲雪倩), Jue Wang(王珏), Bao-Zhu Wang(王宝柱), Heng-Yu Wang(王珩宇), Qing Guo(郭清), Kuang Sheng(盛况). Chin. Phys. B, 2018, 27(8): 087102.
[14] Effect of Au/Ni/4H-SiC Schottky junction thermal stability on performance of alpha particle detection
Xin Ye(叶鑫), Xiao-Chuan Xia(夏晓川), Hong-Wei Liang(梁红伟), Zhuo Li(李卓), He-Qiu Zhang(张贺秋), Guo-Tong Du(杜国同), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华). Chin. Phys. B, 2018, 27(8): 087304.
[15] Electronic states and molecular orientation of ITIC film
Ying-Ying Du(杜莹莹), De-Qu Lin(林德渠), Guang-Hua Chen(陈光华), Xin-Yuan Bai(白新源), Long-Xi Wang(汪隆喜), Rui Wu(吴蕊), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Hong-Nian Li(李宏年). Chin. Phys. B, 2018, 27(8): 088801.
No Suggested Reading articles found!