Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 023701    DOI: 10.1088/1674-1056/abc2c0
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ground state cooling of an optomechanical resonator with double quantum interference processes

Shuo Zhang(张硕)1, Tan Li(李坦)1,†, Qian-Hen Duan(段乾恒)1, Jian-Qi Zhang(张建奇)2,‡, and Wan-Su Bao(鲍皖苏)1,3,§
1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou, Henan 450001, China; 2 Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China; 3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We present a cooling scheme with a tripod configuration atomic ensemble trapped in an optomechanical cavity. With the employment of two different quantum interference processes, our scheme illustrates that it is possible to cool a resonator to its ground state in the strong cavity-atom coupling regime. Moreover, with the assistance of one additional energy level, our scheme takes a larger cooling rate to realize the ground state cooling. In addition, this scheme is a feasible candidate for experimental applications.
Keywords:  laser cooling      coherent optical effects      multiphoton processes      optomechanics  
Received:  17 July 2020      Revised:  23 September 2020      Accepted manuscript online:  20 October 2020
PACS:  37.10.Rs (Ion cooling)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304503), Key Research and Development Project of Guangdong Province, China (Grant No. 2020B030300001), and the National Natural Science Foundation of China (Grant Nos. 828330256, 11636220, 11805279, 1173401, and 11504430).
Corresponding Authors:  Corresponding author. E-mail: lt@qiclab.cn Corresponding author. E-mail: changjianqi@gmail.com §Corresponding author. E-mail: bws@qiclab.cn   

Cite this article: 

Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏) Ground state cooling of an optomechanical resonator with double quantum interference processes 2021 Chin. Phys. B 30 023701

1 Kippenberg T J and Vahala K J 2008 Science 321 1172
2 Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
3 Marquardt F and Girvin S M 2009 Physics 2 40
4 Wilso-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
5 Marquardt F, Chen J P, Clerk A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
6 Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
7 Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
8 Poggio M, Degen C L, Mamin H J and Rugar D 2007 Phys. Rev. Lett. 99 017201
9 Vanner M R, Hofer J, Cole J D and Aspelmeyer M 2013 Nat. Commun. 4 2295
10 Saxena G M and Agarwal A 2006 Opt. Commun. 267 124
11 Clark J B, Lecocq F, Simmonds R W, Aumentado J and Teufel J D 2017 Nature 541 191
12 Gan J H, Liu Y C, Lu C, Wang X, Tey M K and You L 2019 Laser Photonic Rev. 13 1900120
13 Wang D Y, Bai C H, Liu S T, Zhang S and Wang H F 2018 Phys. Rev. A 98 023816
14 Gu W J and Li G X 2013 Phys. Rev. A 87 025804
15 Guo Y, Li K, Nie W and Li Y 2014 Phys. Rev. A 90 053841
16 Liu Y C, Xiao Y F, Luan X S, Gong Q H and Wong C W 2015 Phy. Rev. A 91 033818
17 Xia K and Evers J 2009 Phys. Rev. Lett. 103 227203
18 Wilson-Rae I, Zoller P and Imamo\=glu A 2004 Phys. Rev. Lett. 92 075507
19 Zhu J P, Li G X and Ficek Z 2012 Phys. Rev. A 85 033835
20 Zhu J P and Li G X 2012 Phys. Rev. A 86 053828
21 Rabl P, Cappellaro P, Gurudev Dutt M V, Jiang L, Maze J R and Lukin M D 2009 Phys. Rev. B 79 041302
22 Zhang J Q, Zhang S, Zou J H, Chen L, Yang W, Li Y and Feng M 2013 Opt. Express 21 29695
23 Yan L L, Zhang J Q, Zhang S and Feng M 2015 Sci. Rep. 5 14977
24 Yan L L, Zhang J Q, Zhang S and Feng M 2016 Phys. Rev. A 94 063419
25 Genes C, Ritsch H and Vitali D 2009 Phys. Rev. A 80 061803
26 Genes C, Ritsch H, Drewsen M and Dantan A 2011 Phys. Rev. A 84 051801
27 Breyer D and Bienert M 2012 Phys. Rev. A 86 053819
28 Vogel B, Stannige K and Zoller P 2013 Phys. Rev. A 87 023816
29 Zhang S, Zhang J Q, Zhang J, Wu C W, Wu W and Chen P X 2014 Opt. Express 22 28118
30 Yi Z, Li G X, Wu S P and Yang W P 2014 Opt. Express 22 20060
31 Chen X, Liu Y C, Peng P, Zhi Y Y and Xiao Y F 2015 Phys. Rev. A 92 033841
32 Zeng R P, Zhang S, Wu C W, Wu W and Chen P X 2015 JOSAB 32 2314
33 Li T, Zhang S, Huang H L, Li F G, Fu X Q, Wang X and Bao W S 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045503
34 Liu Y M, Bai C H, Wang D Y, Wang T, Zheng M H, Wang H F, Zhu A D and Zhang S 2018 Opt. Express 26 6143
35 Liao Q H, Dai Y Z, Nie W J, Liu X and Liu Y C 2020 J. Phys. B: At. Mol. Opt. Phys. 53 085402
36 Li L C, Luo R H, Liu L J, Zhang S and Zhang J Q 2018 Sci. Rep. 8 14276
37 Fleischhauer M, Imamo\=glu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
38 Morigi G, Eschner J and Keitel C H 2000 Phys. Rev. Lett. 85 4458
39 Evers J and Keitel C H 2004 Europhys. Lett. 68 370
40 Rice P R and Brecha R J 1996 Opt. Comm. 126 230
41 Bienert M and Morigi G 2012 New J. Phys. 14 023002
42 Zhang S, Duan Q H, Guo C, Wu C W, Wu W and Chen P X 2014 Phys. Rev. A 89 013402
43 Cirac J I, Blatt R and Zoller P 1992 Phys. Rev. A 46 2668
44 Zippilli S and Morigi G 2005 Phys. Rev. A 72 053408
45 Cohen-Tannoudji C, Dupont-Roc J and Grynberg G1998 Atom-Photon Interactions: Basic Processes and Applications (New York: John Wiley and Sons)
46 Dantan A, Albert M and Drewsen M 2012 Phys. Rev. A 85 013840
47 Liu Y C, Shen Y F, Gong Q H and Xiao Y F 2014 Phys. Rev. A 89 053821
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[3] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[4] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[5] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[6] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[7] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[8] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[9] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[10] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[11] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[12] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[13] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[14] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[15] Three-mode optomechanical system for angular velocity detection
Kai Li(李凯), Sankar Davuluri, Yong Li(李勇). Chin. Phys. B, 2018, 27(8): 084203.
No Suggested Reading articles found!