Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018201    DOI: 10.1088/1674-1056/abc54b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain

Chao Yang(杨超)1,2, Jing Wang(王静)1,2, Junsheng Wang(王俊升)1,2, Yu Liu(刘瑜)3, Guomin Han(韩国民)4, Haifeng Song(宋海峰)3,4, and Houbing Huang(黄厚兵)1,2,
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; 2 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; 3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 4 Software Center for High Performance Numerical Simulation, China Academy of Engineering Physics, Beijing 100088, China
Abstract  A multi-phase-field model is implemented to investigate the peritectic solidification of Fe-C alloy. The nucleation mode of austenite is based on the local driving force, and two different thicknesses of the primary austenite on the surface of the ferrite equiaxed crystal grain are used as the initial conditions. The simulation shows the multiple interactions of ferrite, austenite, and liquid phases, and the effects of carbon diffusion, which presents the non-equilibrium dynamic process during Fe-C peritectic solidification at the mesoscopic scale. This work not only reveals the influence of the austenite nucleation position, but also clarifies the formation mechanism of liquid phase channels and molten pools. Therefore, the present study contributes to the understanding of the micro-morphology and micro-segregation evolution mechanisms of Fe-C alloy during peritectic solidification.
Keywords:  multi-phase-field simulation      morphology evolution      peritectic solidification      carbon diffusion      Fe-C alloy  
Received:  14 September 2020      Revised:  16 October 2020      Accepted manuscript online:  28 October 2020
PACS:  82.20.Wt (Computational modeling; simulation)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.30.Fb (Solidification)  
  81.05.Bx (Metals, semimetals, and alloys)  
Fund: Project supported by the Science Challenge Project, China (Grant No. TZZT2019-D1-03), the National Natural Science Foundation of China (Grant No. 51972028), and the National Key Research and Development Program of China (Grant No. 2019YFA0307900).
Corresponding Authors:  Corresponding author. E-mail: hbhuang@bit.edu.cn   

Cite this article: 

Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵) Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain 2021 Chin. Phys. B 30 018201

1 Phelan D, Reid M and Dippenaar R 2006 Metall. Mater. Trans. A 37 985
2 Komizo Y I Trans. JWRI 40 7
3 Luo S, Liu G G, Wang P, Wang X H, Wang W L,Zhu M Y 2020 Metall. Mater. Trans. A 51 767
4 Nestler B and Wheeler A A 2000 Physica D 138 114
5 Böttger B, Eiken J and Apel M 2015 Comput. Mater. Sci. 108 283
6 Ode M, Suzuki T, Kim S G and Kim W T 2000 Sci. Technol. Adv. Mater. 1 43
7 Sun Y and Beckermann C 2007 J. Comput. Phys. 220 626
8 Kim S G, KimW T and Suzuki T 1999 Phys. Rev. E 60 7186
9 Yang C, Wang X T, Wang J S and Huang H B 2020 Comput. Mater. Sci. 172 109322
10 Pan S Y and Zhu M F 2018 Acta Mater. 146 63
11 Eiken J, Böttger B and Steinbach I 2006 Phys. Rev. E 73 066122
12 Alves C L M, Rezende J, Senk D and Kundin J 2019 J. Mater. Res. Technol. 8 233
13 Yasuda H, Morishita K, Nakatsuka N, Nishimura T, Yoshiya M, Sugiyama A, Uesugi K and Takeuchi A 2019 Nat. Commun. 10 1
14 Yang C, Li S L, Wang X T, Wang J S and Huang H B 2020 Comput. Mater. Sci. 171 109220
15 Yang C, Wang X T, Jafri H M, Wang J S and Huang H B 2020 Comput. Mater. Sci. 178 109626
16 Fan Y M, Fang H, Tang Q Y, Zhang Q Y, Pan S Y and Zhu M F 2020 Eur. Phys. J. E 43 1
17 Liu H, Cheng A J, Wang H and Zhao J 2018 Comput. Math. Appl. 76 1876
18 Sekerka R F 2004 J. Cryst. Growth 264 530
19 Röger M and Tonegawa Y 2008 Calc. Var. Partial Differ. Equ. 32 111
20 Jin H Q, Jespersen D, Mehrotra P, Biswas R, Huang L and Chapman B 2011 Parallel Comput. 37 562
21 Pan S Y, Zhu M F and Rettenmayr M 2017 Acta Mater. 132 565
22 Chipman J 1972 Metall. Mater. Trans. B 3 55
23 Wang S J, Luo L S, Su Y Q, Guo J J and Fu H Z 2013 J. Mater. Res. 28 3261
[1] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[2] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[3] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[4] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[5] Thermal and mechanical properties and micro-mechanism of SiO2/epoxy nanodielectrics
Tian-Yu Wang(王天宇), Gui-Xin Zhang(张贵新), and Da-Yu Li(李大雨). Chin. Phys. B, 2021, 30(12): 128101.
[6] Molecular dynamics simulations of dopant effectson lattice trapping of cracks in Ni matrix
Shulan Liu(刘淑兰) and Huijing Yang(杨会静). Chin. Phys. B, 2021, 30(11): 116107.
[7] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[8] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[9] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[10] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
[11] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超)†, Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), and Meng-Bo Luo(罗孟波)‡. Chin. Phys. B, 2020, 29(10): 108201.
[12] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[13] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[14] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[15] The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells
Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民). Chin. Phys. B, 2019, 28(9): 098201.
No Suggested Reading articles found!