Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010306    DOI: 10.1088/1674-1056/abd2ad
Special Issue: SPECIAL TOPIC — Ultracold atom and its application in precision measurement
SPECIAL TOPIC—Ultracold atom and its application in precision measurement Prev   Next  

Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature

Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉)†
Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
Abstract  We theoretically investigate the finite-temperature structure and collective excitations of a self-bound ultradilute Bose droplet in a flat space realized in a binary Bose mixture with attractive inter-species interactions on the verge of mean-field collapse. As the droplet formation relies critically on the repulsive force provided by Lee-Huang-Yang quantum fluctuations, which can be easily compensated by thermal fluctuations, we find a significant temperature effect in the density distribution and collective excitation spectrum of the Bose droplet. A finite-temperature phase diagram as a function of the number of particles is determined. We show that the critical number of particles at the droplet-to-gas transition increases dramatically with increasing temperature. Towards the bulk threshold temperature for thermally destabilizing an infinitely large droplet, we find that the excitation-forbidden, self-evaporation region in the excitation spectrum, predicted earlier by Petrov using a zero-temperature theory, shrinks and eventually disappears. All the collective excitations, including both surface modes and compressional bulk modes, become softened at the droplet-to-gas transition. The predicted temperature effects of a self-bound Bose droplet in this work could be difficult to measure experimentally due to the lack of efficient thermometry at low temperatures. However, these effects may already present in the current cold-atom experiments.
Keywords:  Bose-Einstein condensation      quantum droplet  
Revised:  09 December 2020      Published:  30 December 2020
PACS:  03.75.-b  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the Australian Research Council's (ARC) Discovery Program (Grant Nos. DE180100592 and DP190100815), (Grant No. DP180102018), and (Grant No. DP170104008).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉) Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature 2021 Chin. Phys. B 30 010306

1 Bötcher F, Schmidt J N, Hertkorn J, Ng K S H, Graham S D, Guo M, Langen T and Pfau T2020 arXiv:2007.06391
2 Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M and Pfau T 2016 Phys. Rev. Lett. 116 215301
3 Schmitt M, Wenzel M, Böttcher F, Ferrier-Barbut I and Pfau T 2016 Nature 539 259
4 Chomaz L, Baier S, Petter D, Mark M J, Wächtler F, Santos L and Ferlaino F2016 Phys. Rev. X 6 041039
5 Böttcher F, Wenzel M, Schmidt J-N, Guo M, Langen T, Ferrier-Barbut I, Pfau T, Bombìn R, Sànchez-Baena J, Boronat J and Mazzanti F 2019 Phys. Rev. Research 1 033088
6 Cabrera C, Tanzi L, Sanz J, Naylor B, Thomas B, Cheiney P and Tarruell L 2018 Science 359 301
7 Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L and Tarruell L 2018 Phys. Rev. Lett. 120 135301
8 Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F, Modugno M, Modugno G, Inguscio M and Fattori M 2018 Phys. Rev. Lett. 120 235301
9 Ferioli G, Semeghini G, Masi L, Giusti G, Modugno G, Inguscio M, Gallemi A, Recati A and Fattori M 2019 Phys. Rev. Lett. 122 090401
10 D'Errico C, Burchianti A, Prevedelli M, Salasnich L, Ancilotto F, Modugno M, Minardi F and Fort C 2019 Phys. Rev. Research 1 033155
11 Wang D2019 Quantum Droplet in Heteronuclear Double Bose-Einstein Condensates, talk at IAS Workshop on Quantum Simulation of Novel Phenomena with Ultracold Atoms (May 6-7, 2019)
12 Dalfovo F, Lastri A, Pricaupenko L, Stringari S and Treiner J 1995 Phys. Rev. B 52 1193
13 Barranco M, Guardiola R, Hernàndez S, Mayol R, Navarro J and Pi M 2006 J. Low Temp. Phys. 142 1
14 Gessner O and Vilesov A F 2019 Annu. Rev. Phys. Chem. 70 173
15 Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
16 Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
17 Petrov D S 2015 Phys. Rev. Lett. 115 155302
18 Petrov D S and Astrakharchik G E 2016 Phys. Rev. Lett. 117 100401
19 Baillie D, Wilson R M, Bisset R N and Blakie P B 2016 Phys. Rev. A 94 021602
20 Wächtler F and Santos L 2016 Phys. Rev. A 94 043618
21 Li Y, Luo Z, Liu Y, Chen Z, Huang C, Fu S, Tan H and Malomed B A 2017 New J. Phys. 19 113043
22 Cappellaro A, Macr\`í T and Salasnich L 2018 Phys. Rev. A 97 053623
23 Astrakharchik G E and Malomed B A 2018 Phys. Rev. A 98 013631
24 Cui X 2018 Phys. Rev. A 98 023630
25 Staudinger C, Mazzanti F and Zillich R E 2018 Phys. Rev. A 98 023633
26 Ancilotto F, Barranco M, Guilleumas M and Pi M 2018 Phys. Rev. A 98 053623
27 Parisi L, Astrakharchik G E and Giorgini S 2019 Phys. Rev. Lett. 122 105302
28 Aybar E and Oktel M ö 2019 Phys. Rev. A 99 013620
29 Cikojevi\'c V, Marki\'c L V, Astrakharchik G E and Boronat J 2019 Phys. Rev. A 99 023618
30 Chiquillo E 2019 Phys. Rev. A 99 051601(R)
31 Minardi F, Ancilotto F, Burchianti A, D'Errico C, Fort C and Modugno M 2019 Phys. Rev. A 100 063636
32 Tylutki M, Astrakharchik G E, Malomed B A and Petrov D S 2020 Phys. Rev. A 101 051601(R)
33 Hu H and Liu X J 2020 Phys. Rev. Lett. 125 195302
34 Hu H, Wang J and Liu X J 2020 Phys. Rev. A 102 043301
35 Hu H and Liu X J 2020 Phys. Rev. A 102 043302
36 Wang Y, Guo L, Yi S and Shi T 2020 Phys. Rev. Research 2 043074
37 Wang J B, Pan J S, Cui X and Yi W 2020 Chin. Phys. Lett. 37 076701
38 Lee T D, Huang K and Yang C N 1957 Phys. Rev. 106 1135
39 Wang J, Hu H and Liu X J 2020 New J. Phys. 22 103044
40 Ota M and Astrakharchik G E 2020 SciPost Phys. 9 020
41 Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
42 Hu H and Liu X J 2020 Phys. Rev. A 102 053303
43 Hutchinson D A W, Zaremba E and Griffin A 1997 Phys. Rev. Lett. 78 1842
44 de Boor C R1978 A Practical Guide to Splines(New York: Springer)
45 van der Hart H W 1997 J. Phys. B: At. Mol. Opt. Phys. 30 453
46 Wang J and Greene C H 2010 Phys. Rev. A 82 022506
47 Schmidt M minFunc: unconstrained differentiable multivariate optimization in Matlab
[1] Enhanced second harmonic generation in a two-dimensional optical micro-cavity
Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华). Chin. Phys. B, 2018, 27(3): 034207.
[2] Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field
Duan-Liang Xiao(肖端亮), Meng-Yun Lai(赖梦云), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2016, 25(1): 010307.
[3] Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction
Lü Hao, Zhu Shao-Bing, Qian Jun, Wang Yu-Zhu. Chin. Phys. B, 2015, 24(9): 090308.
[4] An effective method of accelerating Bose gases using magnetic coils
Lu Hai-Chang, Zhai Yue-Yang, Pan Rui-Zhi, Yang Shi-Feng. Chin. Phys. B, 2014, 23(9): 093701.
[5] Temperature dependence of the energy-level shift induced by the Bose–Einstein condensation of photons
Zhang Jian-Jun, Cheng Ze, Yuan Jian-Hui, Zhang Jun-Pei. Chin. Phys. B, 2012, 21(9): 090502.
[6] Second harmonic generation of propagating collective excitations in Bose-Einstein condensates
Huang Guo-Xiang. Chin. Phys. B, 2004, 13(11): 1866-1876.
No Suggested Reading articles found!