Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017201    DOI: 10.1088/1674-1056/abb65e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy

A Surendar1,†, K Geetha2, C Rajan3, and M Alaazim4,
1 Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India\vglue2pt; 2 CSE, Excel Engineering College, Pallakapalayam, Komarapalayam, 637303, India; 3 IT, K S Rangasamy College of Technology Tiruchengode, Namakkal, Tamil Nadu 637215, India; 4 Faculty of Engineering, Universitas Muhammadiyah Surakarta (UMS), Indonesia
Abstract  Bulk metallic glasses (BMGs) with new chemical compositions (ZrCoAgAlNi) were fabricated and the effects of Ag minor addition on the glass forming ability (GFA) and crystallization kinetics were studied. The x-ray diffraction (XRD) test was applied to identify the amorphousness of BMGs or possible crystalline phases. Using differential scanning calorimeter (DSC), the thermal stability and crystallization kinetics under a non-isothermal condition at the different heating rates were studied. Considering the heating rate dependency of glass transition and crystallization kinetics, the activation energy was evaluated and measured for the mentioned processes. It was revealed that the rise in Ag content led to the decrease in activation energy for glass transition, while the activation energy for crystallization increased. The thermal stability and GFA were also studied and it was found that the Ag addition strongly affected the inherent features of BMGs. With the increase in Ag content, the atomic mobility and structural rearrangement changed in the material and consequently, the GFA and thermal stability were significantly improved.
Keywords:  bulk metallic glass      materials design      crystallization kinetics      glass forming ability  
Received:  26 June 2020      Revised:  31 August 2020      Accepted manuscript online:  09 September 2020
PACS:  72.10.Di (Scattering by phonons, magnons, and other nonlocalized excitations)  
Corresponding Authors:  Corresponding author. E-mail: surendararavindhan@ieee.org Corresponding author. E-mail: mohammed.alaazim@gmail.com   

Cite this article: 

A Surendar, K Geetha, C Rajan, and M Alaazim Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy 2021 Chin. Phys. B 30 017201

1 Li C, Lu W, Tan J, et al. 10.1557/jmr.2017.118 2017 J. Mater. Res. 32 7
2 Chen Y and Jiang J Z A 2020 Intermetallics 123 106821
3 Guérin E, Daudin R, Lenain A, et al. 2020 J. Phys.: Condens. Matter 32 214008
4 Mohammadi Rahvard M, Tamizifar M and Boutorabi S M A 2018 Trans. Nonferrous Metal Soc. China 28 1543
5 Mohammadi Rahvard M, Tamizifar M, Boutorabi S M A 2018 J. Non-Cryst. Solids 481 74
6 Chen Y, Tang C, Laws K, Zhu Q and Ferry M 2020 J. Alloys Compd. 820 153079
7 Schroers J 2010 Adv. Mater. 22 1566
8 Al-Heniti S H 2009 J. Alloys Compd. 484 177
9 Wang J Q, Shen Y, Perepezko J H and Ediger M D 2016 Acta Mater. 104 25
10 Xu T, Jian Z, Chang F, Zhuo L and Zhang T 2018 J. Therm. Anal. Calorim. 133 1309
11 Wu J, Zhou Z, Yi J and Peng Z 2020 J. Therm. Anal. Calorim.
12 Obeydavi A, Rezaeian A, Shafyei A, Kameli P and Lee J W 2019 Mater. Res. Express 6 96407
13 Legg B A, Schroers J and Busch R 2007 Acta Mater. 55 1109
14 Bai F X, Yao J H, Wang Y X, Pan J and Li Y 2017n Scr. Mater. 132 58
15 Lad K N, Raval K G and Pratap A 2004 J. Non-Cryst. Solids 334-335 259
16 Cai A, Chen H, Li X, Wang H, Zhou Y and An W 2007 J. Alloys Compd. 430 232
17 Lad K N, Savalia R T, Pratap A, Dey G K and Banerjee S 2008 Thermochim. Acta 473 74
18 Saini S, Srivastava A P and Neogy S 2019 J. Alloys Compd. 772 961
19 Gallino I 2017 Entropy 19
20 Zhao Y and Zhang B 2017 J. Appl. Phys. 122 115107
21 Bochtler B, Gross O and Busch R 2017 Appl. Phys. Lett. 111 261902
22 Zhang C, Hu L, Yue Y and Mauro J C 2010 J. Chem. Phys. 133 14508
23 Jabed A, Rahman Z U, Khan M M, Haider W and Shabib I 2019 Adv. Eng. Mater. 21 1900726
24 Nkou Bouala G I, Etiemble A, Der Loughian C, Langlois C, Pierson J F and Steyer P 2018 Surf. Coatings Technol. 343 108
25 Jabed A, Khan M M, Camiller J, Greenlee-Wacker M, Haider W and Shabib I 2019 Surf. Coatings Technol. 372 278
26 Kissinger H E 1957 Anal. Chem. 29 1702
27 Moynihan C T, Lee S K, Tatsumisago M and Minami T 1996 Thermochim. Acta 280-281 153
28 Srivastava A P, Srivastava D, Mazumdar B and Dey G K 2015 J. Therm. Anal. Calorim. 119 1353
29 Qiao J C and Pelletier J M 2011 J. Non-Cryst. Solids 357 2590
30 Rasheedy M S, Soltan A S and Abd-Elmageed A A I 2009 J. Alloys Compd. 472 581
31 Scherer G W 1992 J. Am. Ceram. Soc. 75 1060
32 Dai R, Ashcraft R, Gangopadhyay A K and Kelton K F 2019 J Non-Cryst. Solids 525 119673
33 Song L J, Gao M, Xu W, Huo J T, Wang J Q and Li R W 2020 Acta Mater. 185 38
[1] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[2] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[3] Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability
Dadong Wen(文大东), Yonghe Deng(邓永和), Ming Gao(高明), and Zean Tian(田泽安). Chin. Phys. B, 2021, 30(7): 076101.
[4] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[5] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[6] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
[7] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[8] Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique
Rui Li(李锐), Yao Liu(刘瑶), Shu-Lan Zuo(左淑兰), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(4): 047501.
[9] LaGa-based bulk metallic glasses
Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋). Chin. Phys. B, 2017, 26(1): 018106.
[10] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
[11] Dynamic strength behavior of a Zr-based bulk metallic glassunder shock loading
Yu Yu-Ying (俞宇颖), Xi Feng (习锋), Dai Cheng-Da (戴诚达), Cai Ling-Cang (蔡灵仓), Tan Ye (谭叶), Li Xue-Mei (李雪梅), Wu Qiang (吴强), Tan Hua (谭华). Chin. Phys. B, 2015, 24(6): 066201.
[12] Decline of nucleation in the heating process with a high heating rate
Yang Gao-Lin (杨高林), Lin Xin (林鑫), Song Meng-Hua (宋梦华), Hu Qiao (胡桥), Wang Zhi-Tai (汪志太), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2014, 23(8): 086401.
[13] Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Yongqing Cai, S. A. Ahmad. Chin. Phys. B, 2013, 22(9): 096101.
[14] Fracture characteristics of bulk metallic glass under high speed impact
Sun Bao-Ru(孙宝茹), Zhan Zai-Ji(战再吉), Liang Bo(梁波), Zhang Rui-Jun(张瑞军), and Wang Wen-Kui(王文魁) . Chin. Phys. B, 2012, 21(5): 056101.
[15] New criterion in predicting glass forming ability of various glass-forming systems
X. H. Du(杜兴蒿) and J. C. Huang(黄志青) . Chin. Phys. B, 2008, 17(1): 249-254.
No Suggested Reading articles found!