Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010304    DOI: 10.1088/1674-1056/abc542
GENERAL Prev   Next  

Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field

Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发)†
Abstract  The entropy squeezing properties of different types of moving three-level atoms coupled with a single-mode coherent field are studied. The influences of the moving velocity and initial states of the three-level atom on the entropy squeezing are discussed. The results show that, the entropy squeezing properties of the three-level atom depend on its initial state, moving velocity, and the type. A stationary three-level atom can not obtain a steady entropy squeezing whatever initial conditions are chosen, while a moving three-level atom can achieve a steady and optimal entropy squeezing through choosing higher velocity and appropriate initial state. Our result provides a simple method for preparing squeezing resources with ultra-low quantum noise of the three-level atomic system without additional any complex techniques.
Keywords:  entropy squeezing      moving three-level atom      single-mode coherent field  
Revised:  16 October 2020      Published:  23 December 2020
PACS:  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064012 and 11374096).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发) Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field 2021 Chin. Phys. B 30 010304

1 Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
2 Srensen J L, Hald J and Polzik E S 1998 Phys. Rev. Lett. 80 3487
3 Srensen A and Mlmer K 1999 Phys. Rev. Lett. 83 2274
4 Berta M, Christandl M, Colbeck R, Renes J M and Renner R Nat. Phys. 6(9) 659
5 Hu M L and Fan H 2012 Phys. Rev. A 86 032338
6 Hu M L and Fan H 2013 Phys. Rev. A 87 022314
7 Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762 1
8 Fang M F, Zhou P and Swain S 2000 Journal of Modern Optics 47 1043
9 Liu X and Fang M F 2002 Chin. Phys. 11 926
10 Li C X and Fang M F 2003 Chin. Phys. 12 294
11 Gea-Banacloche J 1990 Phys. Rev. Lett. 65 3385
12 Gea-Banacloche J 1991 Phys. Rev. A 44 5913
13 Phoenix S J D and Knight P L 1991 Phys. Rev. A 44 6023
14 Yu M and Fang M F 2016 Quantum Information Processing 15 4175
15 Wang Y Y and Fang M F 2018 Chin. Phys. B 27 114207
16 Rainer R Schlicher 1989 Opt. Commun. 70 97
17 Fang M F 1998 Physica A 259 193
18 Liu X J, Fang M F and Zhou Q P 2005 Acta Phys. Sin. 54 703
19 Kaszlikowski D, Gnacinski P, Zukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
20 Walborn S P, Lemelle D S, Almeida M P and Ribeiro P H S 2006 Phys. Rev. Lett. 96 090501
21 Xu X and Fang M F 2020 Chin. Phys. B 29 057305
22 Liu F F, Fang M F and Xu X 2019 Chin. Phys. B 28 060304
23 Riccardi A, Macchiavello C and Maccone L 2017 Phys. Rev. A 95 032109
24 Sargent M III, Scully M O and Lamb W E Jr1974 Laser Physics(Reading: Addison-Wesley)
[1] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[2] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[3] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[4] Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach
H R Baghshahi, M K Tavassoly, A Behjat. Chin. Phys. B, 2014, 23(7): 074203.
[5] Preparation of optimal entropy squeezing state of atomic qubit inside the cavity via two-photon process and manipulation of atomic qubit outside the cavity
Zhou Bing-Ju, Peng Zhao-Hui, Jia Chun-Xia, Jiang Chun-Lei, Liu Xiao-Juan. Chin. Phys. B, 2014, 23(12): 120305.
[6] Single-atom entropy squeezing and quantum entanglement in Tavis--Cummings model with atomic motion
Zou Yan. Chin. Phys. B, 2010, 19(7): 074207.
[7] Preparation and control of atomic optimal entropy squeezing states for a moving two-level atom under control of the two-mode squeezing vacuum fields
Zhou Bing-Ju, Liu Yi-Man, Zhao Ming-Zhuo, Liu Xiao-Juan. Chin. Phys. B, 2010, 19(12): 124207.
[8] Entropy squeezing of an atom with a k-photon in the Jaynes--Cummings model
Kang Dong-Peng, Liao Qing-Hong, Ahamd Muhammad Ashfaq, Wang Yue-Yuan, Liu Shu-Tian. Chin. Phys. B, 2010, 19(1): 014206.
[9] Quantum entanglement between the two-mode fields and atomic entropy squeezing in the system of a moving atom interacting with two-mode entangled coherent field
Zou Yan, Li Yong-Ping. Chin. Phys. B, 2009, 18(7): 2794-2800.
[10] Optimal entropy squeezing sudden generation and its control for an effective two-level moving atom entanglement with the two-mode coherent fields
Liu Xiao-Juan, Zhou Yuan-Jun, Fang Mao-Fa. Chin. Phys. B, 2009, 18(6): 2307-2313.
[11] Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence
Zhang Jian, Shao Bin, Zou Jian. Chin. Phys. B, 2009, 18(4): 1517-1527.
[12] The entropic squeezing of superposition of two arbitrary coherent states
Lu Dao-Ming. Chin. Phys. B, 2008, 17(2): 618-623.
[13] Entropy squeezing of a moving atom and control of noise of the quantum mechanical channel via the two-photon process
Zhou Qing-Ping, Zhou Bing-Ju, Liu Ming-Wei, Liu Xiao-Juan. Chin. Phys. B, 2007, 16(2): 420-428.
[14] Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling
Li Chun-Xian, Fang Mao-Fa. Chin. Phys. B, 2003, 12(3): 294-299.
No Suggested Reading articles found!