Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016203    DOI: 10.1088/1674-1056/abaf9d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity

S K Mitro1, R Majumder2,†, K M Hossain3, Md Zahid Hasan4, Md Emran Hossain2, and M A Hadi5
1 Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Jamalpur- 2012, Bangladesh; 2 Physics Discipline, Khulna University, Khulna- 9208, Bangladesh; 3 Department of Materials Science and Engineering, University of Rajshahi, Rajshahi- 6205, Bangladesh; 4 Department of Electrical and Electronic Engineering, International Islamic University Chittagong, Kumira, Chittagong- 4318, Bangladesh; 5 Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh
Abstract  We theoretically study the structural, elastic and optical properties of ErPdBi together with its anisotropic behaviors using density functional theory. It is observed that ErPdBi satisfies the Born stability criteria nicely and possesses high quality of machinability. The anisotropic behavior of ErPdBi is reported with the help of theoretical anisotropy indices incorporating 3D graphical presentation, which suggests that ErPdBi is highly anisotropic in nature. It is noticed that the minimum thermal conductivity is very low for ErPdBi compared to the several species. This low value of minimum thermal conductivity introduces the potentiality of ErPdBi in high-temperature applications such as thermal barrier coatings. In addition, deep optical insights of ErPdBi reveal that our material can be used in different optoelectronic and electronic device applications ranging from organic light-emitting diodes, solar panel efficiency, waveguides etc. to integration of integrated circuits. Therefore, we believe that our results will provide a new insight into high-temperature applications and will benefit for the development of promising optoelectric devices as well.
Keywords:  ErPdBi      minimum thermal conductivity      anisotropy      density functional theory (DFT)  
Received:  24 June 2020      Revised:  12 August 2020      Accepted manuscript online:  15 August 2020
PACS:  62.20.Dc  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  31.15.E-  
Corresponding Authors:  Corresponding author. E-mail: rinkumajumder02@gmail.com   

Cite this article: 

S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity 2021 Chin. Phys. B 30 016203

1 Dhar S K, Nambudripad N and Vijayaraghavan R 1988 J. Phys. F 18 L41
2 Pierre J and Karla I 2000 J. Magn. Magn. Mater. 217 74
3 Bay T V 2014 Solid State Commun. 183 13
4 Jung M H, Yoshino T, Kawasaki S, Pietrus T, Bando Y, Suemitsu T, Sera M and Takabatake T 2001 J. Appl. Phys. 89 7631
5 Bhattacharya S, Pope A L, Littleton IV R T, Tritt T M, Ponnambalam V, Xia Y and Poon S J 2000 Appl. Phys. Lett. 77 16
6 Barman C K and Alam A 2018 Phys. Rev. B 97 075302
7 Shekhar C, Ouardi S, Nayak A K, Fecher G H, Schnelle W and Felser C 2012 Phys. Rev. B 86 155314
8 Mukhopadhyay A, Mahana S, Chowki S, Topwal D and Mohapatra N 2017 AIP Conf. Proc. 1832 110024
9 Winiarski M J and Bilinska K 2019 Intermetallics 108 55
10 Pavlosiuk O, Filar K, Wisniewski P and Kaczorowski D 2015 Acta Phys. Pol. A 127 656
11 Pan Y, Nikitin A M, Bay T V, Huang Y K, Paulsen C, Yan B H and de Visser A 2013 Europhys. Lett. 104 27001
12 Sekimoto T, Kurosaki K, Muta H and Yamanaka S 2006 J. App. Phys. 99 103701
13 Pavlosiuk O, Fabreges X, Gukasov A, Meven M, Kaczorowski D and Wi\'sniewski P 2018 Physica B 536 56
14 Majumder R and Hossain M M 2019 Comput. Condens. Matter 21 e00402
15 Majumder R, Hossain M M and Shen D 2019 Mod. Phys. Lett. B 33 1950378
16 Gruhn T 2010 Phys. Rev. B 82 125210
17 Majumder R, Mitro S K and Bairagi B 2020 J. Alloys Compd. 836 155395
18 Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
19 Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
20 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
21 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
22 Vanderbilt D 1990 Phys. Rev. B 41 7892
23 Majumder R and Mitro S K 2020 RSC Adv. 10 37482
24 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
25 Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
26 Nielsen O H and Martin R M 1983 Phys. Rev. Lett. 50 697
27 Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828
28 Tse G and Yu D 2015 Comput. Condens. Matter 4 59
29 Huang S, Liu X, Zheng W, Guo J, Xiong R, Wang Z and Shi J 2018 J. Mater. Chem. A 6 20069
30 Shrivastava D and Sanyal S P 2018 Physica C 544 22
31 Shekhar C, Ouardi S, Nayak A K, Fecher G H, Schnelle W and Felser C 2012 Phys. Rev. B 86 155314
32 Pugh S F 1954 Lond. Edinb. Dubl. Phil. Mag. J. Sci. 45 823
33 Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comput. Mater. Sci. 44 774
34 Pettifor D G 1992 Mater. Sci. Technol. 8 345
35 Rubel M H K, Mitro S K, Mondal B K, Rahaman M M, Saiduzzaman M, Hossain J and Kumada N 2020 Physica C 574 1353669
36 Chen X Q, Niu H and Li D, Li Y 2011 Intermetallics 19 1275
37 Mattesini M, Ahuja R and Johansson B 2003 Phys. Rev. B 68 184108
38 Clarke D R 2003 Surf. Coat. Technol. 163 67
39 Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
40 Wang J et al. 2014 J. Solid State Chem. 216 1
41 Mitro S K, Rahman M A, Parvin F and Islam A K M A 2019 Int. J. Mod. Phys. B 33 1950189
42 Chen X K, Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Appl. Phys. Lett. 109 023101
43 Zeng Y Z, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
44 Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
45 Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. Chin.-Phys. Mech. Astron. 63 276811
46 Chen X K and Chen K Q 2020 J. Phys.: Condens. Matter 32 153002
47 Gao X P, Jiang Y H, Zhou R and Feng J 2014 J. Alloys Compd. 587 819
48 Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891
49 Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
50 Gueddouh A, Bentria B and Lefkaier I 2016 J. Magn. Magn. Mater. 406 192
51 Kube C M 2016 AIP Adv. 6 095209
52 Kube C M and Jong M D 2016 J. Appl. Phys. 120 165105
53 Brugger K 1965 J. Appl. Phys. 36 768
54 Duan Y H, Sun Y, Peng M J and Zhou S G 2014 J. Alloys Compd. 595 14
55 Rahman M A, Mitro S K, Parvin F and Islam A K M A 2020 Indian J. Phys.(in press)
56 Naher M I and Naqib S H 2020 J. Alloys Compd. 829 154509
57 Majumder R, Sarker M A R, Hossain M M, Hossain M E, Shen D, Reza A K M S and Kabir M H 2019 J. Sci. Res. 11 195
58 Rubel M H K, Hossain K M, Mitro S K, Rahman M M, Hadi M A and Islam A K M A 2020 Mater. Today Commun. 24 100935
[1] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[2] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[3] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[4] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[5] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[6] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[7] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[8] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[9] Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2
A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛). Chin. Phys. B, 2021, 30(2): 027401.
[10] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[11] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[12] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[13] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[14] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[15] Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy
J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣). Chin. Phys. B, 2020, 29(7): 077802.
No Suggested Reading articles found!