Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016101    DOI: 10.1088/1674-1056/abb3e7

Ab initio study on crystal structure and phase stability of ZrC2 under high pressure

Yong-Liang Guo(郭永亮)1,2,†, Jun-Hong Wei(韦俊红)1, Xiao Liu(刘潇)1, Xue-Zhi Ke(柯学志)3, and Zhao-Yong Jiao(焦照勇)2,
1 School of Science and Henan Key Laboratory of Wire and Cable Structures and Materials, Henan Institute of Technology, Xinxiang 453003, China; 2 School of Physics, Henan Normal University, Xinxiang 453007, China; 3 School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
Abstract  The structural stabilities and crystal evolution behaviors of the hyper stoichiometric compound ZrC2 (carbon rich; C/Zr > 1.0) are studied under ambient and high pressure conditions using first-principles calculations in combination with the particle-swarm optimization algorithm. Six viable structures of ZrC2 in P21/c, Cmmm, Cmc21, P42/nmc, Immm and P6/mmm symmetries are identified. These structures are dynamically stable as their phonon spectra have no imaginary modes at zero pressure or at the selected high-pressure points. Among them, the P21/c phase represents the ground state structure, whereas P21/c, P42/nmc, Immm and P6/mmm phases are part of the phase transition series. The phase order and critical pressures of the phase transition are determined to be approximately 300 GPa according to the equation of states and enthalpy. Furthermore, the mechanical and electronic properties are investigated. The P21/c and Cmc21 phases display a semi-metal nature, whereas the P42/nmc, Immm, P6/mmm and Cmmm phases exhibit a metallic nature. Moreover, the present study reveals considerable information regarding the structural, mechanical and electronic properties of ZrC2, thereby providing key insights into its material properties and evaluating its behavior in practical applications.
Keywords:  crystal structure      phase transition      mechanical property      electronic band      first-principles calculation  
Received:  04 May 2020      Revised:  21 August 2020      Accepted manuscript online:  01 September 2020
PACS:  61.05.-a (Techniques for structure determination)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.20.-x (Mechanical properties of solids)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904081 and 11975100), the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 20A140007), and Research Initiation Fund of Henan Institute of Technology (Grant No. KQ1817).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇) Ab initio study on crystal structure and phase stability of ZrC2 under high pressure 2021 Chin. Phys. B 30 016101

1 Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M and Salem J A 2002 J. Eur. Ceram. Soc. 22 2757
2 Opeka M M, Talmy I G and Zaykoski J A 2004 J. Mater. Sci. 39 5887
3 Savino R, Fumo M D S, Paterna D and Serpico M 2005 Aerospace Sci. Technol. 9 151
4 Li H, Zhang L, Zeng Q, Guan K, Li K, Ren H, Liu S and Cheng L 2011 Solid State Commun. 151 602
5 Katoh Y, Vasudevamurthy G, Nozawa T and Snead L L 2013 J. Nucl. Mater. 441 718
6 Porter I E, Knight T W, Dulude M C, Roberts E and Hobbs J 2013 Nucl. Engin. Design 259 180
7 Snead L L, Katoh Y and Kondo S 2010 J. Nucl. Mater. 399 200
8 Vasudevamurthy G, Katoh Y, Aihara J, Sawa K and Snead L L 2015 J. Nucl. Mater. 464 245
9 Kim D, Chun Y B, Ko M J, Lee H G, Cho M S, Park J Y and Kim W J 2016 J. Nucl. Mater. 479 93
10 Weinberger C R and Thompson G B 2018 J. Am. Ceram. Soc. 101 4401
11 Storms E1967 The refractory carbides (New York: Academic Press)
12 Gusev A I and Rempel A A1994 J. Phys. Chem. Solids 299 14
13 Zhang Y, Liu B and Wang J 2016 Sci. Rep. 5 18098
14 Yu X X, Weinberger C R and Thompson G B 2016 Comput. Mater. Sci. 112 318
15 Xie C, Oganov A R, Li D, Debela T T, Liu N, Dong D and Zeng Q 2016 Phys. Chem. Chem. Phys. 18 12299
16 Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
17 Blöchl P E 1994 Phys. Rev. B 50 17953
18 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
19 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
20 Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
21 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
22 Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
23 Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
24 Li Q, Zhou D, Zheng W, Ma Y and Chen C 2013 Phys. Rev. Lett. 110 136403
25 Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 015502
26 Zhang G T, Bai T T, Yan H Y and Zhao Y R 2015 Chin. Phys. B 24 106104
27 Guo Y L, Wang C Y, Qiu W J, Ke X Z, Huai P, Cheng C, Zhu Z Y and Chen C F 2016 Phys. Rev. B 94 134104
28 Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
29 Sun Y, Xu B and Yi L 2020 Chin. Phys. B 29 023102
30 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
31 Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
32 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
33 Cochran W 1959 Phys. Rev. Lett. 3 412
34 Page Y L and Saxe P 2002 Phys. Rev. B 65 104104
35 Born M 1940 Math. Proc. Cambridge Philos. Soc. 36 160
36 Born M and Huang K1954 Dynamical theory of crystal lattices (New York: Clarendon Press)
37 Wu Z J, Zhao E J, Xiang H P, Hao X M, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
38 Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
39 Voigt W2014 Lehrbuch der Kristallphysik (MIT Ausschlu\ss der Kristalloptik)(Wiesbaden: Springer-Verlag)
40 Reuss A 1929 J. Appl. Math. Mech. Z. Angew. Math. Mech. 9 49
41 Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
42 Green D J1988 An introduction to the mechanical properties of ceramics (Cambridge: Cambridge University Press)
43 Fu H, Peng W and Gao T 2009 Mater. Chem. Phys. 115 789
44 Haines J, Leger J and Bocquillon G 2001 Annu. Rev. Mater. Res. 2001 31 1
45 Pugh S F 1954 Philo. Mag. 45 823
46 Kutepov A L and Kutepova S G 2003 Phys. Rev. B 67 132102
47 Kube C M 2016 AIP Adv. 6 095209
48 Aydin S, Tatar A and Ciftci Y O 2012 J. Nucl. Mater. 429 55
[1] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[2] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[3] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[4] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[5] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[6] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[7] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[8] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[9] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[10] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[11] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[12] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[13] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[14] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[15] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
No Suggested Reading articles found!