Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 127501    DOI: 10.1088/1674-1056/abb230
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds

Shuang Zeng(曾爽)1, Wen-Hao Jiang(姜文昊)1, Hui Yang(杨慧)1, Zhao-Jun Mo(莫兆军)1,† Jun Shen(沈俊)2,‡, and Lan Li(李岚) 1
1 School of Material Science and Engineering, Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Key Laboratory for Optoelectronic Materials and Devices of Tianjin, Tianjin University of Technology, Tianjin 300191, China; 2 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The magnetocaloric effect of Mn, Ni, and Mn-Ni-doped EuTiO3 compounds are studied in the near-liquid-helium-temperature range. The Eu(Ti0.9375Mn0.0625)O3, Eu(Ti0.975Ni0.025)O3, and Eu(Ti0.9125Mn0.0625Ni0.025)O3 are prepared by the sol-gel method. The Eu(Ti0.9375Mn0.0625)O3 and Eu(Ti0.9125Mn0.0625Ni0.025)O3 exhibit ferromagnetism with second-order phase transition, and the Eu(Ti0.975Ni0.025)O3 displays antiferromagnetic behavior. Under the magnetic field change of 10 kOe (1 Oe=79.5775 Am-1), the values of magnetic entropy change are 8.8 Jkg-1K-1, 12 Jkg-1K-1, and 10.9 Jkg-1K-1 for Eu(Ti0.9375Mn0.0625)O3, Eu(Ti0.975Ni0.025)O3, and Eu(Ti0.9125Mn0.0625Ni0.025)O3, respectively. The co-substitution of Mn and Ni can not only improve the magnetic entropy change, but also widen the refrigeration temperature window, which greatly enhances the magnetic refrigeration capacity. Under the magnetic field change of 10 kOe, the refrigerant capacity value of Eu(Ti0.9125Mn0.0625Ni0.025)O3 is 62.6 Jkg-1 more than twice that of EuTiO3 (27 Jkg-1), indicating that multi-component substitution can lead to better magnetocaloric performance.
Keywords:  magnetocaloric effect      magnetic entropy change      magnetic phase transformation  
Received:  15 May 2020      Revised:  12 August 2020      Accepted manuscript online:  25 August 2020
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  65.40.gd (Entropy)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0702704), the National Natural Science Foundation of China (Grant Nos. 11504266 and 51676198), the Tianjin Natural Science Foundation, China (Grant No. 17JCQNJC02300), and the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, China (Grant No. 2017KJ247).
Corresponding Authors:  Corresponding author. E-mail: mzjmzj163@163.com Corresponding author. E-mail: jsen@mail.ipc.ac.cn   

Cite this article: 

Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds 2020 Chin. Phys. B 29 127501

[1] Li L W and Yan M J. Alloys Compd. 823 153810 DOI: 10.1016/j.jallcom.2020.1538102020
[2] Zhang H, Gimaev R, Kovalve B, Kamilov K, Zverev V and Tishin A Phys. Rev. B 558 65 DOI: 10.1016/j.physb.2019.01.0352019
[3] Lee J H, Fang L, Vlahos E, et al. Nature 466 954 DOI: 10.1038/nature093312010
[4] Shvartsman V V, Borisov P, Kleemann W, Kamba S and Katsufuji T Phys. Rev. B 81 064426 DOI: 10.1103/PhysRevB.81.0644262010
[5] Hatabayashi K, Hitosugi T, Hirose Y, Cheng X Q, Shimada T and Hasegawa T Jpn. J. Appl. Phys. 48 100208 DOI: 10.1143/JJAP.48.1002082009
[6] Kamba S, Nuzhnyy D, Vanek P, Savinov M, Knizek K, Shen Z, Santava E, Maca K, Sadowski M and Petzelt J Europhys. Lett. 80 27002 DOI: 10.1209/0295-5075/80/270022007
[7] Wei T, Liu H P, Chen Y F, Yan H Y and Liu J M Appl. Surf. Sci. 257 4505 DOI: 10.1016/j.apsusc.2010.12.1122011
[8] Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O and Mazzoli C Phys. Rev. B 86 094432 DOI: 10.1103/PhysRevB.86.0944322012
[9] McGuire T R, Shafer M W, Joenk R J, Halperin H A and Pickart S J J. Appl. Phys. 37 981 DOI: 10.1063/1.17085491966
[10] Xu S, Gu Y, Wu X S J. Magn. Magn. Mater. 497 166077 DOI: 10.1016/j.jmmm.2019.1660772020
[11] Wang X Y, Zhen S Q, Min Y, Zhou P X, Huang Y Y, Li J F, Chong C G and Dong Z C J. Alloys Compd. 689 63 DOI: 10.1016/j.jallcom.2016.07.3052016
[12] Li L, Zhou H D, Yan J Q, Mandrus D and Keppen V APL Mater. 2 110701 DOI: 10.1063/1.49021372014
[13] Roy S, Khan N and Mandal P APL Mater. 4 026102 DOI: 10.1063/1.49409602016
[14] Roy S, Das M and Mandal P Phys. Rev. Materials 2 064412 DOI: 10.1103/PhysRevMaterials.2.0644122018
[15] Liu Y, Ivanovski N V and Petrovic C Phys. Rev. B 96 184419 DOI: 10.1103/PhysRevB.96.1844192017
[16] Zhang W, Mo Z J, Jiang W H, Hao Z H, Luo J W, Cheng R J, Liu G D, Li L and Shen J J. Magn. Magn. Mater. 492 165684 DOI: 10.1016/j.jmmm.2019.1656842019
[17] Li L, Han E S, Zhu L Z, Qiao S P, Du C Y and Liu H Solid State Ionics 346 115220 DOI: 10.1016/j.ssi.2019.1152202020
[18] Maarouf M and Al-Sunaidi A Comput. Theor. Chem. 1175 112728 DOI: 10.1016/j.comptc.2020.1127282020
[19] Ma J N, Lin J Y, Liu J Y, Li F, Liu Y C and Yang G C Chem. Phys. Lett. 746 137308 DOI: 10.1016/j.cplett.2020.1373082020
[20] Shen J, Li Y X, Zhang J, Guo B, Hu F X, Zhang H W, Chen Y Z, Rong C B and Sun J R J. Appl. Phys 103 07B317 DOI: 10.1063/1.28290352008
[21] Mo Z J, Sun Q L, Shen J, Wang C H, Meng F B, Zhang M H, Huo Y, Li L and Liu G D J. Alloys Compd. 753 1 DOI: 10.1016/j.jallcom.2018.03.2472018
[22] Mo Z J, Jiang W H, Zhao Y, Hao Z H, Zheng Z X, Zhang W, Li L and Shen J J. Magn. Magn. Mater. 477 258 DOI: 10.1016/j.jmmm.2019.01.0682019
[23] Zhang H, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G J. Appl. Phys. 109 123926 DOI: 10.1063/1.36030442011
[24] Katsufuji T and Tkagi H Phys. Rev. B 64 054415 DOI: 10.1103/PhysRevB.64.0544152001
[25] Wei T, Song Q G, Zhou Q J, Li Z P, Qi X L, Liu W P, Guo Y R and Liu J M Appl. Surf. Sci. 258 599 DOI: 10.1016/j.apsusc.2011.07.1292011
[26] Kodama R H, Berkowitz A E, McNiff E J Jr and Foner S Phys. Rev. Lett. 77 394 DOI: 10.1103/PhysRevLett.77.3941996
[27] Mo Z J, Hao Z H, Shen J, Li L, Wu J F, Hu F X, Sun J R and Shen B G J. Alloys Compd. 649 674 DOI: 10.1016/j.jallcom.2015.07.1762015
[28] Akahoshi D, Miyamoto G, Hayakawa Y and Satio T J. Solid State Chem. 280 120985 DOI: 10.1016/j.jssc.2019.1209852019
[29] Midya A, Rubi Km, Chaudhuri A, Rusydi A and Mahendiran R Solid State Commun. 293 33 DOI: 10.1016/0031-9163(64)91158-82019
[30] Li L, Zhou H D, Yan J Q, Mandrus D and Keppens V APL Mater. 2 110701 DOI: 10.1063/1.49021372014
[31] Wada H and Tanabe Y Appl. Phys. Lett. 79 3302 DOI: 10.1063/1.14190482001
[32] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O Nat. Mater. 11 620 DOI: 10.1038/nmat33342012
[33] Choudhury D, Suzuki T, Okuyama D, Morikawa D, Kato K, Takata M, Kobayashi K, Kumai R, Nakao H, Murakami Y, Bremholm M, Iversen B B, Arima T, Tokura Y and Taguchi Y Phys. Rev. B 89 104427 DOI: 10.1103/PhysRevB.89.1044272014
[34] Phan M and Yu S J. Magn. Magn. Mater. 308 325 DOI: 10.1016/j.jmmm.2006.07.0252007
[35] Baneriee B Phys. Lett. 12 16 DOI: 10.1016/0031-9163(64)91158-81964
[36] Arrott A Phys. Rev. 108 1394 DOI: 10.1103/PhysRev.108.13941957
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
No Suggested Reading articles found!