Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120301    DOI: 10.1088/1674-1056/abb7f8
RAPID COMMUNICATION Prev   Next  

Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions

Jungang Fan(范军刚)1,3, Xiangyang Miao(苗向阳)1,2,3,†, and Xiangfu Jia(贾祥福)1,2,3,
1 Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Linfen 041004, China; 2 College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China; 3 College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
Abstract  The effect of final-state dynamic correlation is investigated for ionization of atomic hydrogen by 75-keV proton impact by analyzing double differential cross sections. The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the target nucleus (PT interaction). The correlated final state is nonseparable solutions of the wave equation combining the dynamics of the electron motion relative to the target and projectile, satisfying the Redmond's asymptotic conditions corresponding to long range interactions. The transition matrix is evaluated using the CCW-PT function and the undistorted initial state. Both the correlation effects and the PT interaction are analyzed by the present calculations. The convergence of the continuous correlated final state is examined carefully. Our results are compared with the absolute experimental data measured by Laforge et al. [Phys. Rev. Lett. 103, 053201 (2009)] and Schulz et al. [Phys. Rev. A 81, 052705 (2010)], as well as other theoretical models (especially the results of the latest non perturbation theory). We have shown that the dynamic correlation plays an important role in the ionization of atomic hydrogen by proton impact. While overall agreement between theory and the experimental data is encouraging, detailed agreement is still lacking. However, such an analysis is meaningful because it provides valuable information about the dynamical correlation and PT interaction in the CCW-PT theoretical model.
Keywords:  ionization      three-body Coulomb problem      correlated wave functions      double differential cross section  
Received:  01 July 2020      Revised:  21 August 2020      Accepted manuscript online:  14 September 2020
PACS:  03.65.Nk (Scattering theory)  
  34.80.Dp (Atomic excitation and ionization)  
  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974229 and 11274215).
Corresponding Authors:  Corresponding author. E-mail: sxxymiao@126.com Corresponding author. E-mail: jiaxf@dns.sxnu.edu.cn   

Cite this article: 

Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福) Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions 2020 Chin. Phys. B 29 120301

[1] Dimopoulou C, Moshammer R, Fischer D, Höhr C, Dorn A, Fainstein P D, Crespo López Urrutia J R, Schröter C D, Kollmus H, Mann R, Hagmann S and Ullrich J Phys. Rev. Lett. 93 123203 DOI: 10.1103/PhysRevLett.93.1232032004
[2] Hasan A, Sharma S, Arthanayaka T P, Lamichhane B R, Remolina J, Akula S, Madison D H and Schulz M J. Phys. B 47 215201 DOI: 10.1088/0953-4075/47/21/2152012014
[3] Dhital M, Bastola S, Silvus A, Hasan A, Lamichhane B R, Ali E, Ciappina M F, Lomsadze R A, Cikota D, Boggs B, Madison D H and Schulz M Phys. Rev. A 99 062710 DOI: 10.1103/PhysRevA.99.0627102019
[4] Schulz M, Hasan A, Maydanyuk N V, Foster M, Tooke B and Madison D H Phys. Rev. A 73 062704 DOI: 10.1103/PhysRevA.73.0627042006
[5] Gassert H, Chuluunbaatar O, Waitz M, Trinter F, Kim H-K, Bauer T, Laucke A, Müller Ch, Voigtsberger J, Weller M, Rist J, Pitzer M, Zeller S, Jahnke T, Schmidt L Ph H, Williams J B, Zaytsev S A, Bulychev A A, Kouzakov K A, Schmidt-Böcking H, Dörner R, Popov Yu V and Schöffler M S Phys. Rev. Lett. 116 073201 DOI: 10.1103/PhysRevLett.116.0732012016
[6] Chuluunbaatar O, Kouzakov K A, Zaytsev S A, Zaytsev A S, Shablov V L, Popov Yu V and Gassert H, Waitz M, Kim H K, Bauer T and Laucke A Phys. Rev. A 99 062711 DOI: 10.1103/PhysRevA.99.0627112019
[7] Dhital M, Bastola S, Silvus A, Lamichhane B R, Ali E, Ciappina M F, Lomsadze R, Hasan A, Madison D H and Schulz M Phys. Rev. A 100 032707 DOI: 10.1103/PhysRevA.100.0327072019
[8] Laforge A C, Egodapitiya K N, Alexander J S, Hasan A, Ciappina M F, Khakoo M A and Schulz M Phys. Rev. Lett. 103 053201 DOI: 10.1103/PhysRevLett.103.0532012009
[9] Schulz M, Laforge A C, Egodapitiya K N, Alexander J S, Hasan A, Ciappina M F, Roy A C, Dey R, Samolov A and Godunov A L Phys. Rev. A 81 052705 DOI: 10.1103/PhysRevA.81.0527052010
[10] Sarkadi L Phys. Rev. A 82 052710 DOI: 10.1103/PhysRevA.82.0527102010
[11] Walters H R J and Whelan Colm T Phys. Rev. A 92 062712 DOI: 10.1103/PhysRevA.92.0627122015
[12] Abdurakhmanov I B, Bailey J J, Kadyrov A S and Bray I Phys. Rev. A 97 032707 DOI: 10.1103/PhysRevA.97.0327072018
[13] Ciappina M F and Cravero W R Nucl. Instr. Meth. Phys. Res. B 266 555 DOI: 10.1016/j.nimb.2007.12.0772008
[14] Gasaneo G, Colavecchia F D, Garibotti C R, Miraglia J E and Macri P Phys. Rev. A 55 2809 DOI: 10.1103/PhysRevA.55.28091997
[15] Gasaneo G, Colavecchia F D, Garibotti C R, Miraglia J E and Macri P 1997 J. Phys. B 30 L265 https://iopscience.iop.org/article/10.1088/0953-4075/30/8/002
[16] Colavecchia F D, Gasaneo G and Garibotti C R J. Phys. B 33 L467 DOI: 10.1088/0953-4075/33/12/1082000
[17] Colavecchia F D, Gasaneo G and Garibotti C R Phys. Rev. A 58 2926 DOI: 10.1103/PhysRevA.58.29261998
[18] Colavecchia F D, Gasaneo G and Garibotti C R Physica Scripta T80 411 DOI: 10.1238/Physica.Topical.080a004111999
[19] Ciappina M F, Otranto S and Garibotti C R Phys. Rev. A 66 052711 DOI: 10.1103/PhysRevA.66.0527112002
[20] Ciappina M F, Cravero W R and Schulz M J. Phys. B 40 2577 DOI: 10.1088/0953-4075/40/13/0042007
[21] Duan Y H, Sun S Y and Jia X F Europhys. Lett. 110 13001 DOI: 10.1209/0295-5075/110/130012015
[22] Li X, Ma X Y, Sun S Y and Jia X F Chin. Phys. B 21 113403 DOI: 10.1088/1674-1056/21/11/1134032012
[23] Lu C W, An W F, Sun S Y and Jia X F 2015 Chin. Phys. Lett. 32 093401 DOI: 10.1088/0256-307X/32/9/093401
[24] Niu X J, Sun S Y, Wang F J and Jia X F Phys. Rev. A 96 022703 DOI: 10.1103/PhysRevA.96.0227032017
[25] Silvus A, Dhital M, Bastola S, Buxton J, Klok Z, Ali E, Ciappina M F, Boggs B, Cikota D, Madison D H and Schulz M J. Phys. B 52 125202 DOI: 10.1088/1361-6455/ab1df52019
[26] Hasan A, Arthanayaka T, Lamichhane B R, Sharma S, Gurung S, Remolina J, Akula S, Madison D H, Ciappina M F, Rivarola R D and Schulz M 2016 J. Phys. B 49 04LT01 DOI: 10.1088/0953-4075/49/4/04LT01
[27] Igarashi A and Gulyás L J. Phys. B 51 035201 DOI: 10.1088/1361-6455/aa9d672018
[28] Nassar T E I Results in Physics 7 2506 DOI: 10.1016/j.rinp.2017.07.0332017
[29] Garibotti C R and Miraglia J E Phys. Rev. A 21 572 DOI: 10.1103/PhysRevA.21.5721980
[30] Brauner M, Briggs J S and Klar H J. Phys. B 22 2265 DOI: 10.1088/0953-4075/22/14/0101989
[31] Abramowitz M and Stegun I A (Eds.) 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Appl. Math. Ser., Vol. 55(Washington, DC: U.S. Government Printing Office) p. 507
[32] Sun S Y, Zhao H J and Jia X F Europhys. Lett. 123 23002 DOI: 10.1209/0295-5075/123/230022018
[33] Jia X F, Shi Q C, Chen Z J, Chen J and Xu K Z Phys. Rev. A 55 1971 DOI: 10.1103/PhysRevA.55.19711997
[34] Bandyopadhyayt A, Roy K, Mandal P and Sil N C J. Phys. B 27 4337 DOI: 10.1088/0953-4075/27/18/0271994
[35] Ma X Y, Li X, Sun S Y and Jia X F Europhys. Lett. 98 53001 DOI: 10.1209/0295-5075/98/530012012
[36] Ciappina M F and Cravero W R J. Phys. B 39 2183 DOI: 10.1088/0953-4075/39/9/0072006
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[3] Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉). Chin. Phys. B, 2022, 31(7): 070204.
[4] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[5] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[6] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[7] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[8] Ultrafast dynamics of cationic electronic states of vinyl bromide by strong-field ionization-photofragmentation
Long-Xing Zhou(周龙兴), Yang Liu(刘洋), Shen He(贺屾), Da-Shuai Gao(高大帅), Xing-Chen Shen(沈星晨), Qi Chen(陈淇), Tao Yu(于涛), Hang Lv(吕航), and Hai-Feng Xu(徐海峰). Chin. Phys. B, 2022, 31(2): 028202.
[9] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[10] Dynamic stabilization of atomic ionization in a high-frequency laser field with different initial angular momenta
Di-Yu Zhang(张頔玉), Yue Qiao(乔月), Wen-Di Lan(蓝文迪), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), and Da-Jun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103202.
[11] Influence of Coulomb force between two electrons on double ionization of He-like atoms
Peipei Liu(刘培培), Yongfang Li(李永芳), and Jingtao Zhang(张敬涛). Chin. Phys. B, 2022, 31(1): 013202.
[12] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[13] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[14] X-ray emission for Ar11+ ions impacting on various targets in the collisions near the Bohr velocity
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红), Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Chang-Hui Liang(梁昌慧), Yao-Zong Li(李耀宗), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2021, 30(8): 083201.
[15] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
No Suggested Reading articles found!