Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117503    DOI: 10.1088/1674-1056/abbbf2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction

Jia Lu(芦佳)1, Yu-Lin Gan(甘渝林)1, Yun-Lin Lei(雷蕴麟)2, Lei Yan(颜雷)1, †, and Hong Ding(丁洪)1,3,4$
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China
2 College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
3 Department of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

EuS is one of typical ferromagnetic semiconductor using as spin filter in spintronic devices, and the doped one could be a good spin injector. Herein, we fabricate a spin-functional tunnel junction by epitaxially growing the ferromagnetic EuS film on Nb-doped SrTiO3. The improvement of Curie temperature up to 35 K is associated with indirect exchange through additional charge carriers at the interface of EuS/Nb:STO junction. Its magnetic field controlled current–voltage curves indicate the large magnetoresistance (MR) effect in EuS barriers as a highly spin-polarized injector. The negative MR is up to 60% in 10-nm EuS/Nb:STO at 4 T and 30 K. The MR is enhanced with increasing thickness of EuS barrier. The large negative MR effect over a wide temperature range makes this junction into a potential candidate for spintronic devices.

Keywords:  EuS/Nb:SrTiO3 tunnel junction      spin filter      magnetoresistance  
Received:  21 July 2020      Revised:  10 September 2020      Accepted manuscript online:  28 September 2020
Fund: the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB07000000), the National Key Research and Development Program of China (Grant No. 2016YFA0300600), and the Fund from the Beijing Municipal Science & Technology Commission (Grant No. Z191100007219012).
Corresponding Authors:  Corresponding author. E-mail: lyan@iphy.ac.cn   

Cite this article: 

Jia Lu(芦佳), Yu-Lin Gan(甘渝林), Yun-Lin Lei(雷蕴麟), Lei Yan(颜雷), and Hong Ding(丁洪)$ Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction 2020 Chin. Phys. B 29 117503

Fig. 1.  

(a) The cross-section structure of the EuS/Nb:STO junction; (b) the typical XRD pattern of EuS thin film grown on Nb:STO (100) substrate.

Fig. 2.  

(a) The in-plane magnetization hysteresis loops of the EuS (10 nm)/Nb:STO junction measured at 2 K; (b) temperature dependences of the normalized magnetization of epitaxial EuS films grown on Nb:STO and STO substrates, respectively, recorded for magnetic field 3-mT applied parallel to the film surface.

Fig. 3.  

(a) IV characteristics of EuS/Nb:STO in zero magnetic field at various temperature; (b) IV characteristics of EuS/Nb:STO in various magnetic field at 30 K.

Fig. 4.  

(a) The temperature dependence of resistivity of 10-nm EuS/Nb:STO junction measured in various magnetic field, the sharp decrease of R indicates the onset of ferromagnetic transition; (b) magnetoresistance of the EuS/Nb:STO junction as a function of magnetic field at various temperature; the hysteretic behavior displayed at T = 8 K.

Fig. 5.  

(a) RT curve and (b) magnetoresistance (at 30 K) of the junction with EuS barrier of 10 nm, 24 nm, and 45 nm.

[1]
Prinz G A 1998 Science 282 1660 DOI: 10.1126/science.282.5394.1660
[2]
Gupta A, Sun J Z 1999 J. Magn. Magn. Mater. 200 24 DOI: 10.1016/S0304-8853(99)00373-X
[3]
R J S Jr. Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85 DOI: 10.1126/science.282.5386.85
[4]
Moodera J S, Santos T S, Nagahama T 2007 J. Phys.: Condens. Matter 19 165202 DOI: 10.1088/0953-8984/19/16/165202
[5]
Nagahama T, Santos T S, Moodera J S 2007 Phys Rev Lett. 99 016602 DOI: 10.1103/PhysRevLett.99.016602
[6]
Senapati K, Blamire M G, Barber Z H 2011 Nat. Mater. 10 849 DOI: 10.1038/nmat3116
[7]
McGuire T R, Argyle B E, Shafer M W, Smart J S 1962 Appl. Phys. Lett. 1 17 DOI: 10.1063/1.1777353
[8]
VanHouten S 1962 Phys. Lett. 2 215 DOI: 10.1016/0031-9163(62)90231-7
[9]
Wachter P 1979 Handbook on the Physics and Chemistry of Rare Earths Elsevier 507 574 DOI: 10.1016/S0168-1273(79)02010-9
[10]
Mauger A., Godart C 1986 Phys. Rep. 141 51 DOI: 10.1016/0370-1573(86)90139-0
[11]
Zinn W 1976 J. Magn. Magn. Mater. 3 23 DOI: 10.1016/0304-8853(76)90007-X
[12]
Esaki L, Stiles P J, Molnar S v 1967 Phys. Rev. Lett. 19 852 DOI: 10.1103/PhysRevLett.19.852
[13]
Moodera J S, Hao X, Gibson G A, Meservey R 1988 Phys. Rev. Lett. 61 637 DOI: 10.1103/PhysRevLett.61.637
[14]
Santos T S, Moodera J S, Raman K V, Negusse E, Holroyd J, Dvorak J, Liberati M, Idzerda Y U, Arenholz E 2008 Phys. Rev. Lett. 101 147201 DOI: 10.1103/PhysRevLett.101.147201
[15]
Muller M, Schreiber R, Schneider C M 2011 IEEE Trans. Magn. 47 1635 DOI: 10.1109/TMAG.2011.2106767
[16]
Caspers C, Müller M, Gray A X, Kaiser A M, Gloskovskii A, Fadley C S, Drube W, Schneider C M 2011 Phys. Rev. B 84 205217 DOI: 10.1103/PhysRevB.84.205217
[17]
Panguluri R P, Santos T S, Negusse E, Dvorak J, Idzerda Y, Moodera J S, Nadgorny B 2008 Phys. Rev. B 78 125307 DOI: 10.1103/PhysRevB.78.125307
[18]
Fumagalli P, Schirmeisen A, Gambino R J 1998 Phys. Rev. B 57 57 DOI: 10.1103/PhysRev.57.57
[19]
Ren C, Trbovic J, Xiong P, von Molnár S 2005 Appl. Phys. Lett. 86 012501 DOI: 10.1063/1.1842857
[20]
Guilaran I J, Read D E, Kallaher R L, Xiong P, von Molnár S, Stampe P A, Kennedy R J, Keller J 2003 Phys. Rev. B 68 144424 DOI: 10.1103/PhysRevB.68.144424
[21]
Hao X, Moodera J S, Meservey R 1990 Phys. Rev. B 42 8235 DOI: 10.1103/PhysRevB.42.8235
[22]
O’Mahony D, Smith C, Budtz-Jorgensen C, Venkatesan M, Lunney J G, McGilp J F, Coey J M D 2005 Thin Solid Films 488 200 DOI: 10.1016/j.tsf.2005.04.081
[23]
Yang Q I, Zhao J, Zhang L, Dolev M, Fried A D, Marshall A F, Risbud S H, Kapitulnik A 2014 Appl. Phys. Lett. 104 082402 DOI: 10.1063/1.4866265
[24]
Stachow-Wójcik A, Story T, Dobrowolski W, Arciszewska M, Gałąka R R, Kreijveld M W, Swüste C H W, Swagten H J M, de Jonge W J M, Twardowski A, Sipatov A Y 1999 Phys. Rev. B 60 15220 DOI: 10.1103/PhysRevB.60.15220
[25]
Demokritov S, Rticker U, Grtinberg P 1996 J. Magn. Magn. Mater. 163 21 DOI: 10.1016/S0304-8853(96)00318-6
[26]
Li X L, Xu X H 2019 Chin. Phys. B 28 098506 DOI: 10.1088/1674-1056/ab38ac
[27]
Ziese M, Köhler U, Bollero A, Höhne R, Esquinazi P 2005 Phys. Rev. B 71 180406 DOI: 10.1103/PhysRevB.71.180406
[28]
Shapira Y, Reed T B 1972 Phys. Rev. B 5 4877 DOI: 10.1103/PhysRevB.5.4877
[29]
De Gennes P G, Friedel J 1958 J. Phys. Chem. Solids 4 71 DOI: 10.1016/0022-3697(58)90196-3
[30]
Lomicronpez-Mir L, Frontera C, Aramberri H, Bouzehouane K, Cisneros-Fernandez J, Bozzo B, Balcells L, Martinez B 2018 Sci. Rep. 8 861 DOI: 10.1038/s41598-017-19129-5
[31]
O’Donnell J, Onellion M, Rzchowski M S, Eckstein J N, Bozovic I 1997 Phys. Rev. B 55 5873 DOI: 10.1103/PhysRevB.55.5873
[32]
Thompson W A, Holtzberg F, McGuire T R, Petrich G 1972 Magn. Magn. Mater. AIP Conf. Proc. 5 827 DOI: 10.1063/1.2953924
[33]
Zhu L Q, Lin T, Guo S L, Chu J H 2012 Acta Phys. Sin 61 087501 in Chinese DOI: 10.7498/aps.61.087501
[34]
Müller M, Schreiber R, Schneider C M 2011 J. Appl. Phys. 109 07C710 DOI: 10.1063/1.3549609
[35]
Pan L F, Wen H Y, Huang L, Chen L, Deng H X, Xia J B, Wei Z M 2019 Chin. Phys. B 28 107504 DOI: 10.1088/1674-1056/ab3e45
[36]
Butler W H, Zhang X G, Schulthess T C, MacLaren J M 2001 Phys. Rev. B 63 054416 DOI: 10.1103/PhysRevB.63.054416
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[6] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[9] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[10] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[11] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[12] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[13] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[14] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[15] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
No Suggested Reading articles found!