Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117101    DOI: 10.1088/1674-1056/ab9c13
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamic recombination of triplet excitons in polymer heterojunctions

Ya-Dong Wang(王亚东)1, †, Jian-Jun Liu(刘建军)1, Xi-Ru Wang(王溪如)2, Yan-Xia Liu(刘艳霞)1, and Yan Meng(孟艳)3, ‡
1 College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
2 Department of Electronics, Polytech Nice Sophia, Nice 06200, France
3 Department of Physics, Xingtai University, Xingtai 054001, China
Abstract  

The dynamic recombination of two triplet excitons with opposite spins in the heterojunction structure has been investigated using a nonadiabatic evolution method. We demonstrate that luminous composite states including the excited polaron and the biexciton can be formed efficiently via the triplet exciton–triplet exciton reaction in the heterojunction and therefore this reaction can enhance the electroluminescence efficiency considerably, which is consistent qualitatively with experimental observations. Meanwhile, we find that, although the heterojunctions are beneficial to the generation of luminescent particles, large band offset caused by the heterojunction structure is not helpful to improve the electroluminescence efficiency. In addition, the mechanism of the triplet exciton–triplet exciton reaction in heterojunction is different from that of two similar coupling chains. Our results may deepen the understanding of the electroluminescence mechanism in polymer light-emitting devices.

Keywords:  polymers      electron-lattice interaction      excitons  
Received:  11 May 2020      Revised:  08 June 2020      Accepted manuscript online:  12 June 2020
Fund: the National Natural Science Foundation of China (Grant No. 11347171), the Doctoral Foundation (Grant No. 12995563), and the Research Fund (Grant No. YB2018026) from Hebei North University.
Corresponding Authors:  Corresponding author. E-mail: zjkwangyadong@sina.com Corresponding author. E-mail: my882154@126.com   

Cite this article: 

Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), and Yan Meng(孟艳) Dynamic recombination of triplet excitons in polymer heterojunctions 2020 Chin. Phys. B 29 117101

Fig. 1.  

Schematic diagrams of the polymer heterojunction structure (a) and its energy spectrum (b).

Fig. 2.  

Temporal evolution of the lattice configuration for the recombination processes between two triplet excitons with different interchain interactions: t1 = 0.1 eV (top panel); t1 = 0.18 eV (bottom panel). The unit of the third axis vertical to the time and site index is 10–1 nm.

Fig. 3.  

Evolutions of the localized electronic energy levels (a) and their occupied numbers (b) with time, t1 = 0.1 eV (from the same simulation as the top panel of Fig. 2).

Fig. 4.  

The schematic diagram of resultant states for the recombination processes between two triplet excitons.

Fig. 5.  

Evolutions of the localized electronic energy levels (a) and their occupied numbers (b) with time, t1 = 0.18 eV (from the same simulation as the bottom panel of Fig. 2).

Fig. 6.  

Dependence of yields for states (b), (c) and (d) on the interchain interactions for the recombination process between two triplet excitons.

Fig. 7.  

Dependence of yields for states (b), (c) and (d) on the band offset for the recombination process between two triplet excitons.

[1]
Wilson J S, Dhoot A S, Seeley A J, Khan M S, Köhler A, Friend R H 2001 Nature 413 828 DOI: 10.1038/35101565
[2]
Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny Z V 2001 Nature 409 494 DOI: 10.1038/35054025
[3]
Tandon K, Ramasesha S, Mazumdar S 2003 Phys. Rev. B 67 045109 DOI: 10.1103/PhysRevB.67.045109
[4]
Brazovskii S A, Kirova N N 1981 JETP Lett. 33 4
[5]
Liu W, Li Y, Qu Z, Gao K, Yin S, Liu D S 2009 Chin. Phys. B 26 037101 DOI: 10.1088/1674-1056/26/3/037101
[6]
Wang Y D, Meng Y, Di B, Wang S L, An Z 2010 Chin. Phys. B 19 127105 DOI: 10.1088/1674-1056/19/12/127105
[7]
Baldo M A, O’Brien D F, Thompson M E, Forrest S R 1999 Phys. Rev. B 60 14422 DOI: 10.1103/PhysRevB.60.14422
[8]
Cao Y, Parker I D, Yu G, Zhang C, Heeger A J 1999 Nature 397 414 DOI: 10.1038/17087
[9]
Feng Y W, Zhao H, Chen Y G, Yan Y H 2017 Chin. Phys. B 26 107103 DOI: 10.1088/1674-1056/26/10/107103
[10]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234 DOI: 10.1038/nature11687
[11]
Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C 2011 Appl. Phys. Lett. 98 083302 DOI: 10.1063/1.3558906
[12]
Kondakov D Y, Pawlik T D, Hatwar T K, Spindler J P 2009 J. Appl. Phys. 106 124510 DOI: 10.1063/1.3273407
[13]
Meng Y, Di B, Wang Y D, Liu X J, An Z 2012 Eur. Phys. J. B 85 415 DOI: 10.1140/epjb/e2012-30444-0
[14]
Armstrong N R, Wang W, Alloway D M, Placencia D, Ratcliff E, Brumbach M 2010 Macromolecular Rapid Communications 30 717 DOI: 10.1002/marc.200900075
[15]
Greenham N C, Shinar J, Partee J, Lane P A, Amir O, Lu F, Friend R H 1996 Phys. Rev. B 53 13528 DOI: 10.1103/PhysRevB.53.13528
[16]
Morteani A C, Dhoo A S, Kim J S, Silva C, Greenham N C, Murphy C, Moons E, Cina S, Burroughes J H, Friend R H 2003 Adv. Mater. 15 1708 DOI: 10.1002/(ISSN)1521-4095
[17]
Sun Z, Stafström S 2013 J. Chem. Phys. 13 164905 DOI: 10.1063/1.4802764
[18]
Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698 DOI: 10.1103/PhysRevLett.42.1698
[19]
Hubbard J 1963 Proc. R. Soc. London A 276 238
[20]
Meng Y, Di B, Liu X J, An Z, Wu C Q 2008 J. Chem. Phys 128 184903 DOI: 10.1063/1.2912190
[21]
Brankin R W, Gladwell I, Shampine L F 1992 RKSUITE: A Suite of Runge--Kutta Codes for the Initial Value Problem for ODEs Soft report 92-S1 Department of Mathematics, Southern Methodist University Dallas, Texas, USA http://www.netlib.org
[22]
Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781 DOI: 10.1103/RevModPhys.60.781
[23]
Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830 DOI: 10.1103/PhysRevLett.84.2830
[24]
Vogl P, Campbell D K 1990 Phys. Rev. B 41 12797 DOI: 10.1103/PhysRevB.41.12797
[1] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[2] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Effect of strain on exciton dynamics in monolayer WS2
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生). Chin. Phys. B, 2019, 28(8): 087201.
[5] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
[6] Optical anisotropy and the direction of polarization of exciton emissions in a semiconductor quantum dot:Effect of heavy- and light-hole mixing
Ranber Singh, Rajiv Kumar, Vikramjeet Singh. Chin. Phys. B, 2017, 26(8): 087303.
[7] Enhancing redshift phenomenon in time-resolved photoluminescence spectra of AlGaN epilayer
Wei Li(李维), Peng Jin(金鹏), Wei-Ying Wang(王维颖), De-Feng Mao(毛德丰), Xu Pan(潘旭), Xiao-Liang Wang(王晓亮), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(7): 077802.
[8] Highly sensitive polymer photodetectors with a wide spectral response range
Mile Gao(高米勒), Wenbin Wang(王文斌), Lingliang Li(李凌亮), Jianli Miao(苗建利), Fujun Zhang(张福俊). Chin. Phys. B, 2017, 26(1): 018201.
[9] Thermo- and photo-driven soft actuators based on crosslinked liquid crystalline polymers
Wei Gu(顾伟), Jia Wei(韦嘉), Yanlei Yu(俞燕蕾). Chin. Phys. B, 2016, 25(9): 096103.
[10] Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach
Zicong Zhou(周子聪), Béla Joós. Chin. Phys. B, 2016, 25(8): 088701.
[11] Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well
Wei-Min Zheng(郑卫民), Su-Mei Li(李素梅), Wei-Yan Cong(丛伟艳), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2016, 25(4): 047302.
[12] Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations
Zheng Wang(王铮) and Bao-Hui Li(李宝会). Chin. Phys. B, 2016, 25(1): 016402.
[13] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[14] Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers
Zhao Xu-Liang (赵旭亮), Yue Yuan-Bin (岳远斌), Liu Tong (刘通), Sun Jian (孙健), Wang Xi-Bin (王希斌), Sun Xiao-Qiang (孙小强), Chen Chang-Ming (陈长鸣), Zhang Da-Ming (张大明). Chin. Phys. B, 2015, 24(4): 044101.
[15] Self-assembly of lamella-forming diblock copolymers confined in nanochannels: Effect of confinement geometry
Yu Bin (于彬), Deng Jian-Hua (邓建华), Wang Zheng (王铮), Li Bao-Hui (李宝会), Shi An-Chang (史安昌). Chin. Phys. B, 2015, 24(4): 046402.
No Suggested Reading articles found!