Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107801    DOI: 10.1088/1674-1056/abaee0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system

Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†
1 School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China
Abstract  

We present a room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system with the microwave pump–probe technique and the spin readout technique, which includes a single spin of nitrogen–vacancy (NV) center in diamond and a nanomechanical cantilever. The resonance frequency of the nanoresonator can be measured with the nolinear Kerr spectrum, and the parameters that influence the nolinear Kerr spectrum are also investigated. Further, according to the relationship between frequency shifts and variable mass attached on the nanoresonator, this system can also be used to detect the mass of DNA molecules with the nolinear Kerr spectrum. Benefiting from the single spin of the NV center in diamond has a long coherence time at 300 K, the hybrid system can realize room temperature mass sensor, and the mass response rate can reach 2600 zg/Hz.

Keywords:  nonlinear mass sensing      nitrogen-vacancy center      nanomechanical resonator  
Received:  30 June 2020      Revised:  10 August 2020      Accepted manuscript online:  13 August 2020
PACS:  78.47.jh (Coherent nonlinear optical spectroscopy)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Corresponding Authors:  Corresponding author. E-mail: chenphysics@126.com   
About author: 
†Corresponding author. E-mail: chenphysics@126.com
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11647001 and 11804004) and Anhui Provincial Natural Science Foundation (Grant No. 1708085QA11).

Cite this article: 

Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)† Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system 2020 Chin. Phys. B 29 107801

Fig. 1.  

Schematic diagram of a spin–oscillator system of a magnetized clamped-free NR coupled to the electronic spin associated with an NV center in diamond in the presence of a strong pump laser and a weak probe laser.

Fig. 2.  

The optical Kerr coefficient as a function of the detuning of the probe field from the exciton resonance with three vibrational frequencies of NR ωn = 0.8 MHz, ωn = 1.0 MHz, and ωn = 1.2 MHz for Ω2 = 81(kHz)2, Δc = 0, γn = 10−3 kHz, and g0 = 40 kHz.

Fig. 3.  

(a) The optical Kerr coefficient as functions of the probe field from the exciton for different coupling strengths. (b) The detailed parts of the left peaks in panel (a). (c) The optical Kerr coefficient as functions of the probe field from the exciton with several different decay rates. (d) The detailed parts of the left peaks in panel (c).

Fig. 4.  

The optical Kerr coefficient without anything else and with 10 or 30 DNA molecules on the surface of NR. The inset shows the relationship between the frequency shift of NR and the number of added DNA molecules.

[1]
Rips S, Hartmann M J 2013 Phys. Rev. Lett. 110 120503 DOI: 10.1103/PhysRevLett.110.120503
[2]
Okamoto H, Gourgout A, Chang C Y, Onomitsu K, Mahboob I, Chang E Y, Yamaguchi H 2013 Nat. Phys. 9 480 DOI: 10.1038/nphys2665
[3]
Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866 DOI: 10.1073/pnas.1419326112
[4]
Pechal M, Arrangoiz-Arriola P, Safavi-Naeini A H 2019 Quantum Sci. Technol. 4 015006 DOI: 10.1088/2058-9565/aadc6c
[5]
Habraken S J M, Stannigel K, Lukin M D, Zoller P, Rabl P 2012 New J. Phys. 14 115004 DOI: 10.1088/1367-2630/14/11/115004
[6]
Albrecht A, Retzker A, Jelezko F, Plenio M B 2013 New J. Phys. 15 083014 DOI: 10.1088/1367-2630/15/8/083014
[7]
Moser J, Güttinger J, Eichler A, Esplandiu M J, Liu D E, Dykman M I, Bachtold A 2013 Nat. Nanotechnol. 8 493 DOI: 10.1038/nnano.2013.97
[8]
Chen H J, Zhu K D 2015 Sci. China Phys. Mech. Astron. 58 1 DOI: 10.1007/s11433-014-5637-4
[9]
Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Rubinsztein-Dunlop H 2012 Phys. Rev. Lett. 108 120801 DOI: 10.1103/PhysRevLett.108.120801
[10]
Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806 DOI: 10.1103/PhysRevA.86.053806
[11]
Chen H J, Zhu K D 2013 J. Appl. Phys. 114 213101 DOI: 10.1063/1.4838936
[12]
Chen H J, Zhu K D 2014 J. Opt. Soc. Am. B 31 1684 DOI: 10.1364/JOSAB.31.001684
[13]
Kwon O K, Kim K S, Park J, Kang J W 2013 Comput. Mater. Sci. 67 329 DOI: 10.1016/j.commatsci.2012.09.017
[14]
Verbridge Scott S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112 DOI: 10.1063/1.2822406
[15]
Norte R A, Moura J P, Gröblacher S 2016 Phys. Rev. Lett. 116 147202 DOI: 10.1103/PhysRevLett.116.147202
[16]
Tsukanov A V 2016 Russ. Microelectron. 45 77 DOI: 10.1134/S1063739716020104
[17]
Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329 DOI: 10.1038/nature02658
[18]
Bennett S D, Kolkowitz S, Unterreithmeier Q P, Rabl P, BleszynskiJayich A C, Harris J G E, Lukin M D 2012 New J. Phys. 14 125004 DOI: 10.1088/1367-2630/14/12/125004
[19]
Kolkowitz S, BleszynskiJayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603 DOI: 10.1126/science.1216821
[20]
Rabl P, Cappellaro P, Gurudev-Dutt M V, Jiang L, Maze J R, Lukin M D 2009 Phys. Rev. B 79 041302 DOI: 10.1103/PhysRevB.79.041302
[21]
Zhou L G, Wei L F, Gao M, Wang X B 2010 Phys. Rev. A 81 042323 DOI: 10.1103/PhysRevA.81.042323
[22]
Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Mater. 8 383 DOI: 10.1038/nmat2420
[23]
Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879 DOI: 10.1038/nphys2070
[24]
Mizukami S, Sajitha E P, Watanabe D, Wu F, Miyazaki T, Naganuma H, Oogane M, Ando Y 2010 Appl. Phys. Lett. 96 152502 DOI: 10.1063/1.3396983
[25]
Hiebert W 2012 Nat. Nanotechnol. 7 278 DOI: 10.1038/nnano.2012.66
[26]
Yamashita M, Fenn J B 1984 J. Phys. Chem. 88 4451 DOI: 10.1021/j150664a002
[27]
Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M 1989 Science 246 64 DOI: 10.1126/science.2675315
[28]
Ekinci K L, Roukes M L 2005 Rev. Sci. Instrum. 76 061101 DOI: 10.1063/1.1927327
[29]
Schwab K C, Roukes M L 2005 Phys. Today 58 36 DOI: 10.1063/1.2012461
[30]
Treutlein P 2012 Science 335 1584 DOI: 10.1126/science.1220167
[31]
Liu G Q, Xing J, Ma W L, Wang P, Li C H, Po H C, Zhang Y R, Fan H, Liu R B, Pan X Y 2017 Phys. Rev. Lett. 118 150504 DOI: 10.1103/PhysRevLett.118.150504
[32]
Palyi A, Struck P R, Rudner M, Flensberg K, Burkard G 2012 Phys. Rev. Lett. 108 206811 DOI: 10.1103/PhysRevLett.108.206811
[33]
Semiao F L, Furuya K, Milburn G J 2009 Phys. Rev. A 79 063811 DOI: 10.1103/PhysRevA.79.063811
[34]
Hashemi H, Rodriguez A W, Joannopoulos J D, Soljačić M, Johnson S G 2009 Phys. Rev. A 79 013812 DOI: 10.1103/PhysRevA.79.013812
[35]
Li J J, He W, Zhu K D 2011 Phys. Rev. B 83 115445 DOI: 10.1103/PhysRevB.83.115445
[36]
Westra H J R, Poot M, van der Zant H S J, Venstra W J 2010 Phys. Rev. Lett. 105 117205 DOI: 10.1103/PhysRevLett.105.117205
[37]
Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov A 2010 Phys. Rev. Lett. 105 097401 DOI: 10.1103/PhysRevLett.105.097401
[38]
Yao P J, Pathak P K, Illes E, Münch S, Reitzenstein S, Franeck P, Löffler A, Heindel T, Höfling S, Worschech L, Forchel A 2010 Phys. Rev. B 81 033309 DOI: 10.1103/PhysRevB.81.033309
[39]
Wu W H, Zhu K D 2015 Nanotechnology 26 015501 DOI: 10.1088/0957-4484/26/1/015501
[40]
Neukirch L P, Gieseler J, Quidant R, Novotny L, Nick Vamivakas A 2013 Opt. Lett. 38 2976 DOI: 10.1364/OL.38.002976
[41]
Scala M, Kim M S, Morley G W, Barker P F, Bose S 2013 Phys. Rev. Lett. 111 180403 DOI: 10.1103/PhysRevLett.111.180403
[42]
Li X X, Li P B, Ma S L, Li F L 2017 Sci. Rep. 7 14116 DOI: 10.1038/s41598-017-14245-8
[43]
Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Chin. Phys. B 26 084202 DOI: 10.1088/1674-1056/26/8/084202
[44]
Qin L G, Wang Q 2017 Chin. Phys. Lett. 34 17303 DOI: 10.1088/0256-307X/34/1/017303
[45]
Tang J, Xu X L 2018 Chin. Phys. B 27 027804 DOI: 10.1088/1674-1056/27/2/027804
[46]
Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L, Sun B Q 2015 Chin. Phys. Lett. 32 107804 DOI: 10.1088/0256-307X/32/10/107804
[47]
Yang S, Dou X M, Yu Y, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2015 Chin. Phys. Lett. 32 77804 DOI: 10.1088/0256-307X/32/7/077804
[48]
Han C 2019 Acta Phys. Sin. 68 247803 in Chinese DOI: 10.7498/aps.68.20190960
[49]
Wang K, Li H O, Xiao M, Cao G, Guo G P 2018 Chin. Phys. B 27 090308 DOI: 10.1088/1674-1056/27/9/090308
[50]
Yang J Y, Chen H J 2019 Acta Phys. Sin. 68 246302 in Chinese
[51]
Rabl P, Kolkowitz S J, Koppens F H L, Harris J G E, Zoller P, Lukin M D 2010 Nat. Phys. 6 602 DOI: 10.1038/nphys1679
[52]
Boyd R W 1992 Nonlinear Optics California San Diego 225
[53]
Liu J, Zhu K D 2019 Opt. Commun. 450 236 DOI: 10.1016/j.optcom.2019.05.037
[54]
Chen H J, Wu H W 2018 Sci. Rep. 8 17677 DOI: 10.1038/s41598-018-35680-1
[55]
Scully M O, Zubairy M S 1997 Quantum Optics Cambridge Cambridge University Press 513 515
[56]
Li J J, Zhu K D 2011 Phys. Rev. B 83 245421 DOI: 10.1103/PhysRevB.83.245421
[57]
Jiang C, Chen B, Li J J, Zhu K D 2011 J. Appl. Phys. 110 083107 DOI: 10.1063/1.3654023
[58]
Calleja M, Kosaka P M, Paulo A S, Tamayo J 2012 Nanoscale 4 4925 DOI: 10.1039/c2nr31102j
[59]
Liu F, Alaie S, Leseman Z C, Hossein-Zadeh M 2013 Opt. Express 21 19555 DOI: 10.1364/OE.21.019555
[60]
Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027 DOI: 10.1088/0960-1317/21/2/025027
[1] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[2] Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit
Ya-Rui Zheng(郑亚锐), Jian Xing(邢健), Yan-Chun Chang(常彦春), Zhi-Guang Yan(闫智广), Hui Deng(邓辉), Yu-Lin Wu(吴玉林), Li Lü(吕力), Xin-Yu Pan(潘新宇), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2017, 26(2): 020305.
[3] Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels
Su Shi-Lei (苏石磊), Chen Li (陈丽), Guo Qi (郭奇), Wang Hong-Fu (王洪福), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2015, 24(2): 020305.
[4] Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems
Cao Cong (曹聪), Liu Gang (刘刚), Zhang Ru (张茹), Wang Chuan (王川). Chin. Phys. B, 2014, 23(4): 040304.
[5] Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond
Zhang Duo (张多), Li Jia-Hua (李家华), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2014, 23(4): 044204.
[6] Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box
C. Valverde, A.T. Avelar, and B. Baseia . Chin. Phys. B, 2012, 21(3): 030308.
No Suggested Reading articles found!