Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097802    DOI: 10.1088/1674-1056/ab961a

Optical properties of core/shell spherical quantum dots

Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威)
College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract  In this study, the effects of quantum dot size on the binding energy, radiative lifetime, and optical absorption coefficient of exciton state in both GaN/AlxGa1-xN core/shell and AlxGa1-xN/GaN inverted core/shell quantum dot structures are studied. For the GaN/AlxGa1-xN core/shell structure, the variation trend of binding energy is the same as that of radiation lifetime, both of which increase first and then decrease with the increase of core size. For AlxGa1-xN/GaN inverted core/shell structure, the binding energy decreases first and then increases with core size increasing, and the trends of radiation lifetime varying with core size under different shell sizes are different. For both structures, when the photon energy is approximately equal to the binding energy, the peak value of the absorption coefficient appears, and there will be different peak shifts under different conditions.
Keywords:  spherical quantum dot      binding energy      optical absorption coefficient      exciton radiation lifetime  
Received:  04 April 2020      Revised:  20 May 2020      Published:  05 September 2020
PACS:  78.67.Hc (Quantum dots)  
  73.21.La (Quantum dots)  
  71.35.-y (Excitons and related phenomena)  
Fund: Project supported by the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2019MS01006 and 2020MS01008), the Science Project of the Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZY19047), the Doctoral Starting-up Foundation of Inner Mongolia Agricultural University, China (Grant No. BJ2013B-2), and the Grassland Talent Project, China.
Corresponding Authors:  Lei Shi     E-mail:

Cite this article: 

Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威) Optical properties of core/shell spherical quantum dots 2020 Chin. Phys. B 29 097802

[1] Rossetti R, Nakahaha S and Brus L E 1983 J. Chem. Phys. 79 1086
[2] Peng Z A and Peng X 2001 J. Am. Chem. Soc. 123 183
[3] Akita K, Kyono T, Yoshizumi Y, Kitabayashi H and Katayama K 2007 J. Appl. Phys. 101 033104
[4] Khan M A, Shatalov M, Maruska H P, Wang H M and Kuokstis E 2005 Jpn. J. Appl. Phys. 44 7191
[5] Ruf T, Serrano J, Cardona M, Pavone P, Pabst M, Krisch M, D'Astuto M, Suski T, Grzegory I and Leszczynski M 2011 Phys. Rev. Lett. 86 906
[6] Zeiri N, Bouazra A, Abdi-Ben Nasrallah S and Said M 2020 Phys. Scr. 95 045801
[7] Fonoberov V A and Balandin A A 2003 J. Appl. Phys. 94 7178
[8] Balandin A A and Fonoberov V A 2004 J. Vac. Sci. Technol. B 22 2190
[9] Cheng T S, Jenkins L C, Hooper S E, Foxon C T, Orton J W and Lacklison D E 1995 Appl. Phys. Lett. 66 1509
[10] Raya-Moreno M, Rurali R and Cartoixá X 2019 Phys. Rev. Mater. 3 084607
[11] Ghazi El H and Pete A J 2017 Superlattices and Microstructures 104 222
[12] Ben Afkir N, Feddi E, Dujardin F, Zazoui M and Meziane J 2018 Physica B: Condensed Matter 534 10
[13] Tang Z M, Liu J H, Liu Y L, He H, Fu Y C and Shen X M 2019 IOP Conf. Series: Materials Science and Engineering 504 012080
[14] Wang H Y, Jin G and Tan Q L 2019 IOP Conf. Series: Materials Science and Engineering 563 022009
[15] Shan L, Agarwal M and Mishchenko E G 2019 Phys. Rev. B 99 035434
[16] Andreev A D and O'Reilly E P 2001 Appl. Phys. Lett. 79 521
[17] Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Casey Jr H C, Keller B P, Mishraand U K and DenBaars S P 1997 Appl. Phys. Lett. 71 2572
[18] Chafai A, Essaoudi I, Ainane A, Dujardin F and Ahuja R 2019 Physica B 559 23
[19] Pattammal M, John Peter A and Yoo Chang Kyoo 2011 Superlattices and Microstructures 50 181
[20] Traetta G, Cingolani R, Carlo A Di, Sala F D and Lugli P 2000 Appl. Phys. Lett. 76 1042
[21] Xia C X, Chen X Y, Wei S Y and Jia Y 2013 J. Appl. Phys. 113 214310
[22] Hylleraas E A 1929 Z. Physik 54 347
[23] Adachi S 2005 Properties of Group IV, Ⅲ-V and Ⅱ-VI Semiconductors (England: Wiley) pp. 195-198
[24] Shi L and Yan Z W 2019 J. Appl. Phys. 125 174302
[25] Ibral A, Zouitine A, Aazou S, Assaid El Mahdi, Feddi El Mustapha and Dujardin F 2013 J. Optoelectron. Adv. Mater. 15 1268
[26] El-Yadri M, Feddi E, Aghoutane N, El Aouami A, Radu A, Dujardin F, Nguyen Chuong V, Phuc Huynyh V and Duque C A 2018 J. Appl. Phys. 124 144303
[27] Alen B, Bosch J, Granados D, Martínez-Pastor J, García J M and González L 2007 Phys. Rev. B 75 045319
[28] Anchala, Purohit S P and Mathur K C 2012 IEEE J. Quantum Electron. 48 628
[29] Marquardt O, Mourad D, Schulz S, Hickel T, Czycholl G and Neugebauer J 2008 Phys. Rev. B 78 235302
[30] Bosch J, Alén B, Martinez-Pastor J, Granados D, Garcia J M and González L 2008 Superlattices and Microstructures 43 582
[31] Califano M, Franceschetti A and Zunger A 2007 Phys. Rev. B 75 115401
[32] Aktürk A, Sahin M, Koc F and Erdinc A 2014 J. Phys. D: Appl. Phys. 47 285301
[33] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[34] Lei L P, Shi L and Yan Z W 2019 Journal of Inner Mongolia University (Natural Science Edition) 50 2
[35] Senger R T and Bajaj K K 2003 Phys. Rev. B 68 205314
[36] Mathan Kumar K, John Peter A and Lee C 2011 Eur. Phys. J. B 84 431
[37] Narayanan M and John Peter A 2012 Superlattices and Microstructures 51 486
[38] Khamkhami J El, Feddi E, Assaid E, Dujardin F, Stebe B and Diouri J 2002 Physica E 15 99
[1] Site preferences of alloying transition metal elements in Ni-based superalloy: A first-principles study
Baokun Lu(路宝坤), Chong-Yu Wang(王崇愚), Zhihui Du(都志辉). Chin. Phys. B, 2018, 27(9): 097102.
[2] Influences of adsorptions of some inorganic molecules on electronic, optical, and thermodynamic properties of Mg12O12 nanocage: A computational approach
Asghar Mohammadi Hesari, Hamid Reza Shamlouei. Chin. Phys. B, 2018, 27(8): 084210.
[3] Density functional theory study of structural stability for gas hydrate
Ping Guo(郭平), Yi-Long Qiu(邱奕龙), Long-Long Li(李龙龙), Qiang Luo(罗强), Jian-Fei Zhao(赵建飞), Yi-Kun Pan(潘意坤). Chin. Phys. B, 2018, 27(4): 043103.
[4] Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot
Ahmed S Jbara, Zulkafli Othaman, M A Saeed. Chin. Phys. B, 2016, 25(5): 057801.
[5] Fractional-dimensional approach for excitons in GaAsfilms on AlxGa1-xAs substrates
Zhen-Hua Wu(武振华), Lei Chen(陈蕾), Qiang Tian(田强). Chin. Phys. B, 2016, 25(3): 037310.
[6] Polaron effect on the optical rectification in spherical quantum dots with electric field
Zhen-Yu Feng(冯振宇), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2016, 25(10): 107804.
[7] Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot
A. Rejo Jeice, Sr. Gerardin Jayam, K. S. Joseph Wilson. Chin. Phys. B, 2015, 24(11): 110303.
[8] Binding energies of impurity states in strained wurtzite GaN/AlxGa1-xN heterojunctions with finitely thick potential barriers
Feng Zhen-Yu, Ban Shi-Liang, Zhu Jun. Chin. Phys. B, 2014, 23(6): 066801.
[9] First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh
Niu Wen-Xia, Zhang Hong, Gong Min, Cheng Xin-Lu. Chin. Phys. B, 2013, 22(6): 066802.
[10] Ar adsorptions on Al (111) and Ir (111) surfaces: a first-principles study
Niu Wen-Xia,Zhang Hong. Chin. Phys. B, 2012, 21(2): 026802.
[11] Impurity-related electronic properties in quantum dots under electric and magnetic fields
Zhang Hong, Zhai Li-Xue, Wang Xue, Zhang Chun-Yuan, Liu Jian-Jun. Chin. Phys. B, 2011, 20(3): 037301.
[12] The binding energy of a hydrogenic impurity in self-assembled double quantum dots
Zhang Hong, Wang Xue, Zhao Jian-Feng, Liu Jian-Jun. Chin. Phys. B, 2011, 20(12): 127301.
[13] Size dependence of biexciton binding energy in single InAs/GaAs quantum dots
Dou Xiu-Ming, Sun Bao-Quan, Huang She-Song, Ni Hai-Qiao, Niu Zhi-Chuan, Yang Fu-Hua, Jia Rui. Chin. Phys. B, 2009, 18(6): 2258-2263.
[14] Pressure influence on the Stark effect of impurity states in a strained wurtzite GaN/AlxGa1-xN heterojunction
Zhang Min, Ban Shi-Liang. Chin. Phys. B, 2009, 18(10): 4449-4455.
[15] First-principles study of structures and electronic properties of cadmium sulfide clusters
Chu He-Ying, Liu Zhao-Xia, Qiu Guo-Li, Kong De-Guo, Wu Si-Xin, Li Yun-Cai, Du Zu-Liang. Chin. Phys. B, 2008, 17(7): 2478-2483.
No Suggested Reading articles found!