Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084207    DOI: 10.1088/1674-1056/ab943b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide

Lanting Ji(姬兰婷)1,2, Wei Chen(陈威)1, Yang Gao(高阳)1, Yan Xu(许言)1, Chi Wu(吴锜)2, Xibin Wang(王希斌)1, Yunji Yi(衣云骥)1, Baohua Li(李宝华)1, Xiaoqiang Sun(孙小强)1, Daming Zhang(张大明)1
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science&Engineering, Jilin University, Changchun 130012, China;
2 Institute of Marine Science and Technology, Shandong University, Qingdao 250100, China
Abstract  Electro-optic modulator is a key component for on-chip optical signal processing. An electro-optic phase modulator based on multilayer graphene embedded in silicon nitride waveguide is demonstrated to fulfill low-power operation. Finite element method is adopted to investigate the interaction enhancement between the graphene flake and the optical mode. The impact of multilayer graphene on the performance of phase modulator is studied comprehensively. Simulation results show that the modulation efficiency improves with the increment of graphene layer number, as well as the modulation length. The 3-dB bandwidth of around 48 GHz is independent of graphene layer number and length. Compared to modulator with two-or four-layer graphene, the six-layer graphene/silicon nitride waveguide modulator can realize π phase shift at a low-power consumption of 14 fJ/bit when the modulation length is 240 μm.
Keywords:  electro-optic modulator      graphene      silicon nitride      waveguide  
Received:  13 February 2020      Revised:  02 April 2020      Published:  05 August 2020
PACS:  42.79.Hp (Optical processors, correlators, and modulators)  
  42.79.Gn (Optical waveguides and couplers)  
  78.67.Wj (Optical properties of graphene)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFB2203001), the National Natural Science Foundation of China (Grant Nos. 61675087, 61875069, and 61605057), and the Science and Technology Development Plan of Jilin Province, China (Grant No. JJKH20190118KJ).
Corresponding Authors:  Xiaoqiang Sun     E-mail:  sunxq@jlu.edu.cn

Cite this article: 

Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明) Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide 2020 Chin. Phys. B 29 084207

[1] Janner D, Lucchi F and Belmonte M 2007 Opt. Express 15 10739
[2] Pérez-Galacho D, Marris-Morini D and Stoffer R 2016 Opt. Express 24 26332
[3] Krishnamoorthy A V, Luff B J and Bijlani B 2012 Opt. Express 20 22224
[4] Sun X, Zhou L and Li X 2011 Appl. Opt. 50 3428
[5] Xiu C L, Shan W H and Xin J C 2019 Acta Phys. Sin. 68 168102(in Chinese)
[6] Mo J W, Qiu Y W and Yi R B 2019 Acta Phys. Sin. 68 156501(in Chinese)
[7] Wu C C, Guo X D and Hu H 2019 Acta Phys. Sin. 68 148103(in Chinese)
[8] Koziol Z, Gawlik G and Jagielski J 2019 Chin. Phys. B 28 096101
[9] Li M, Qu G F and Wang Y Z 2019 Chin. Phys. B 28 093401
[10] Zhang X F, Liu Z H and Liu W L 2019 Chin. Phys. B 28 086103
[11] Fan C, Tian Y and Ren P 2019 Chin. Phys. B 28 076105
[12] Sun Z, Hasan T and Torrisi F 2010 ACS Nano 4 803
[13] Avouris P and Freitag M 2014 IEEE J. Sel. Top. Quantum Electron. 20 6000112
[14] Shi K, Zhao W and Lu Z 2013 Opt. Lett. 38 4342
[15] Xie C, Wang Y and Zhang Z X 2018 Nano Today 19 41
[16] Wu Z and Xu Y 2018 Appl. Opt. 57 3260
[17] Ye S W, Yuan F and Zou X H 2017 IEEE J. Sel. Top. Quantum Electron. 23 3400105
[18] Liu M, Yin X and Ulin-Avila E 2011 Nature 474 64
[19] Yang L, Hu T and Hao R 2013 Opt. Lett. 38 2512
[20] Liu M, Yin X and Zhang X 2012 Nano. Lett. 12 1482
[21] Hu Y, Pantouvaki M and Campenhout J 2016 Laser Photon. Rev. 10 307
[22] Mohsin M, Schall D and Otto M 2014 Opt. Express 22 15292
[23] Ji L, Zhang D and Xu Y 2013 IEEE Photon. J. 11 7800911
[24] Phatak A, Qin C and Goda K 2016 Opt. Lett. 41 2501
[25] Gosciniak J and Tan D T 2013 Nanotechnology 24 185202
[26] Mohsin M, Neumaier D and Schall D 2015 Sci. Rep. 5 10967
[27] Rodriguez S B, Yan R and Kelly M 2012 Nat. Commun. 3 780
[28] Phare C T, Y H Daniel Lee and Cardenas J 2015 Nat. Photon. 9 511
[29] Fan M, Yang H and Zheng P 2017 Opt. Express 25 21619
[30] Zhang X, Zhang Y B and Xiong C 2016 J. Opt. 18 074016
[31] Feng J and Akimoto R 2014 IEEE Photon. Tech. Lett. 26 706
[32] Bauters J F, Heck M J R and John D D 2011 Opt. Express 19 24090
[33] Shiramin L A and Thourhout D V 2017 IEEE J. Sel. Top. Quantum Electron. 23 3600107
[34] Wang J, Cheng Z and Shu C 2015 IEEE Photon. Tech. Lett. 27 1765
[35] Sorianello V, Midrio M and Romagnoli M 2015 Opt. Express 23 6478
[36] Hu X, Zhang Y and Chen D 2019 J. Lightwave Technol. 37 2284
[37] Zhong H, Zhang Z and Chen B 2015 Nano Res. 8 1669
[38] Bao Q and Loh K P 2012 ACS Nano 6 3677
[39] Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
[40] Wülbern J H, Hampe J and Petrov A 2009 Appl. Phys. Lett. 94 241107
[41] Ji L, Gao Y and Xu Y 2018 IEEE J. Quantum Electron 54 5200107
[42] Yan J, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 166802
[43] Wang F, Zhang Y and Tian C 2008 Science 320 206
[44] Hwang C, Siegel D A and Mo S K 2012 Sci. Rep. 2 590
[45] Xu C, Jin Y and Yang L 2012 Opt. Express 20 22398
[46] Koester S J and Li M 2012 Appl. Phys. Lett. 100 171107
[47] Hu Y, Xiao X and Xu H 2012 Opt. Express 20 15079
[48] Cheng Z, Chen X and Wong C Y 2012 Opt. Lett. 37 1217
[49] Politi A, Cryan M J and Rarity J G 2008 Science 320 646
[50] Zhu X, Shi L and Schmidt M 2013 Nano Lett. 13 4690
[51] Zhu X, Yan W and Jepsen P U 2013 Appl. Phys. Lett. 102 131101
[52] Ding Y, Guan X and Zhu X 2017 Nanoscale 9 15576
[1] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[2] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[3] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[4] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[5] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[6] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[7] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[8] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[9] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[10] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[11] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[12] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[13] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[14] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[15] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
No Suggested Reading articles found!