Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088503    DOI: 10.1088/1674-1056/ab90f2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction

Jing Zeng(曾晶)1,3, Ke-Qiu Chen(陈克求)2, Yanhong Zhou(周艳红)4
1 College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China;
2 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang 421002, China;
4 College of Science, East China Jiao Tong University, Nanchang 330013, China
Abstract  Very recently, experimental evidence showed that the hydrogen is retained in dithiol-terminated single-molecule junction under the widely adopted preparation conditions, which is in contrast to the accepted view[Nat. Chem. 11 351 (2019)]. However, the hydrogen is generally assumed to be lost in the previous physical models of single-molecule junctions. Whether the retention of the hydrogen at the gold-sulfur interface exerts a significant effect on the theoretical prediction of spin transport properties is an open question. Therefore, here in this paper we carry out a comparative study of spin transport in M-tetraphenylporphyrin-based (M=V, Cr, Mn, Fe, and Co; M-TPP) single-molecule junction through Au-SR and Au-S(H)R bondings. The results show that the hydrogen at the gold-sulfur interface may dramatically affect the spin-filtering efficiency of M-TPP-based single-molecule junction, depending on the type of transition metal ions embedded into porphyrin ring. Moreover, we find that for the Co-TPP-based molecular junction, the hydrogen at the gold-sulfur interface has no obvious effect on transmission at the Fermi level, but it has a significant effect on the spin-dependent transmission dip induced by the quantum interference on the occupied side. Thus the fate of hydrogen should be concerned in the physical model according to the actual preparation condition, which is important for our fundamental understanding of spin transport in the single-molecule junctions. Our work also provides guidance in how to experimentally identify the nature of gold-sulfur interface in the single-molecule junction with spin-polarized transport.
Keywords:  transport properties      molecular electronic devices      gold-sulfur interface      density-functional theory      nonequilibrium Green's functions  
Received:  06 March 2020      Revised:  02 April 2020      Accepted manuscript online: 
PACS:  85.65.+h (Molecular electronic devices)  
  73.40.-c (Electronic transport in interface structures)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674092, 11804093, and 61764005), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40006), the Scientific Research Fund of the Education Department of Hunan Province, China (Grant No. 18B368), the Science and Technology Development Plan Project of Hengyang City, China (Grant No. 2018KJ121), and the Science and Technology Plan Project of Hunan Province, China (Grant No. 2016TP1020).
Corresponding Authors:  Jing Zeng, Ke-Qiu Chen     E-mail:  zengjing@hynu.edu.cn;keqiuchen@hnu.edu.cn

Cite this article: 

Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红) Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction 2020 Chin. Phys. B 29 088503

[1] Ke G, Duan C, Huang F and Guo X 2020 InfoMat 2 92
[2] Andres R P, Bein T, Dorogi M, Feng S, Henderson J I, Kubiak C P, Mahoney W, Osifchin R G and Reifenberger R 1996 Science 272 1323
[3] Kuang G, Chen S Z, Yan L, Chen K Q, Shang X, Liu P N and Lin N 2018 J. Am. Chem. Soc. 140 570
[4] Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A and Guo X 2016 Science 352 1443
[5] Xin N, Wang J, Jia C, Liu Z, Zhang X, Yu C, Li M, Wang S, Gong Y, Sun H, Zhang G, Liu Z, Zhang G, Liao J, Zhang D and Guo X 2017 Nano Lett. 17 856
[6] Zeng J, Chen K Q and Tong Y X 2018 Carbon 127 611
[7] Zhang Z, Guo C, Kwong D J, Li J, Deng X and Fan Z 2013 Adv. Funct. Mater. 23 2765
[8] Qiu M, Zhang Z H, Deng X Q and Pan J B 2010 Appl. Phys. Lett. 97 242109
[9] Kuang G, Chen S Z, Wang W, Lin T, Chen K, Shang X, Liu P N and Lin N 2016 J. Am. Chem. Soc. 138 11140
[10] Pan C N, Long M Q and He J 2018 Chin. Phys. B 27 088101
[11] Zeng Y J, Liu Y Y, Zhou W X and Chen K Q 2018 Chin. Phys. B 27 036304
[12] Gu Y, Hu Y, Huang J, Li Q and Yang J 2019 J. Phys. Chem. C 123 16366
[13] Yang K, Chen H, Pope T, Hu Y, Liu L, Wang D, Tao L, Xiao W, Fei X, Zhang Y Y, Luo H G, Du S, Xiang T, Hofer W A and Gao H J 2019 Nat. Commun. 10 1
[14] Zeng J and Chen K Q 2020 J. Mater. Chem. C 8 3758
[15] Garner M H, Li H, Chen Y, Su T A, Shangguan Z, Paley D W, Liu T, Ng F, Li H, Xiao S, Nuckolls C, Venkataraman L and Solomon G C 2018 Nature 558 415
[16] Shi X, Dai Z and Zeng Z 2007 Phys. Rev. B 76 235412
[17] Cai S, Deng W, Huang F, Chen L, Tang C, He W, Long S, Li R, Tan Z, Liu J, Shi J, Liu Z, Xiao Z, Zhang D and Hong W 2019 Angew. Chem. 131 3869
[18] Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J and Renaud N 2016 Nat. Chem. 8 1099
[19] Pilevarshahri R, Rungger I, Archer T Sanvito S and Shahtahmassebi N 2011 Phys. Rev. B 84 174437
[20] Tsuji Y, Staykov A and Yoshizawa K 2011 J. Am. Chem. Soc. 133 5955
[21] Cho W J, Cho Y, Min S K, Kim W Y and Kim K S 2011 J. Am. Chem. Soc. 133 9364
[22] Han L, Zuo X, Li H, Li Y, Fang C and Liu D 2019 J. Phys. Chem. C 123 2736
[23] Deng X, Zhang Z, Zhou J and Qiu M 2010 Appl. Phys. Lett. 97 143103
[24] Kwong G, Zhang Z and Pan J 2011 Appl. Phys. Lett. 99 123108
[25] Xie F, Fan Z Q, Chen K Q, Zhang X J and Long M Q 2017 Org. Electron. 50 198
[26] Fan Z Q, Zhang Z H, Qiu M, Deng X Q and Tang G P 2012 Appl. Phys. Lett. 101 073104
[27] Qiu M, Zhang Z, Fan Z, Deng X and Pan J 2011 J. Phys. Chem. C 115 11734
[28] Zeng J and Chen K Q 2017 Phys. Chem. Chem. Phys. 19 9417
[29] Häkkinen, H 2012 Nat. Chem. 4 443
[30] Inkpen M S, Liu Z F, Li H, Campos L M, Neaton J B and Venkataraman L 2019 Nat. Chem. 11 351
[31] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[32] Hong K and Kim W Y 2013 Angew. Chem. 125 3473
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[4] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[5] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[6] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[7] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[8] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[9] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[10] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[11] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[12] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[13] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[14] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[15] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
No Suggested Reading articles found!