Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 083301    DOI: 10.1088/1674-1056/ab8a3d
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals

Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田)
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130000, China
Abstract  

As is well known, the basic intrinsic properties of materials can be significant for their practical applications. In this work, the room-temperature absorption, transmittance, reflectance spectra, and relative photoelectricities parameters of the Mg4Ta2O9 crystals are demonstrated. Meanwhile, the polarized Raman spectra of Mg4Ta2O9 crystals are also described. The room-temperature photoluminescence (PL) and the temperature-dependent PL for Mg4Ta2O9 crystals are obtained. Significantly, we observe a phonon-participated PL process in Mg4Ta2O9.

Keywords:  corundum      band gap energy      polarized Raman      photoelectric      ultraviolet emission  
Received:  14 February 2020      Revised:  09 April 2020      Accepted manuscript online: 
PACS:  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  61.05.cp (X-ray diffraction)  
  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
Fund: 

Project supported by the National Key Research and Development Program, China (Grant No. 2017YFA0403704), the National Natural Science Foundation of China (Grant Nos. 11304113, 11474127, and 11574112), and the Fundamental Research Funds for the Central Universities, China.

Corresponding Authors:  Qiang Zhou     E-mail:  zhouqiang@jlu.edu.cn

Cite this article: 

Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田) Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals 2020 Chin. Phys. B 29 083301

[1] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[2] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
[3] Xiao J, Liu P, Wang C X and Yang G W 2017 Prog. Mater. Sci. 87 140
[4] Jiang Y, Xia H, Zhang J, Yang S, Jiang H and Chen B 2015 J. Mater. Sci. Tech. 31 1232
[5] Blasse G and Bril A 1971 J. Solid State Chem. 3 69
[6] Stevels A and Vink A 1974 J. Lumin. 8 443
[7] Macke A J H 1976 J. Solid State Chem. 19 221
[8] Sun D C, Senz S and Hesse D 2004 J. Eur. Ceram. Soc. 24 2453
[9] Navale S C and Ravi V 2005 Mater. Sci. Eng.:B 119 189
[10] Gaikwad A B, Navale S C, Samuel V, Murugan A V and Ravi V 2006 Mater. Res. Bul. 41 347
[11] Wu H T, Yang C H, Wu W B and Yue Y L 2012 Surf. Rev. Lett. 19 1250024
[12] Huang C and Chen J 2009 J. Cryst. Growth 311 627
[13] Sun D, Senz S and Hesse D 2006 J. Eur. Ceram. Soc. 26 3181
[14] Coldea R, Tennant D, Wheeler E, Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibidl P and Kiefer K 2010 Science 327 177
[15] Yang Z, Chang Y and Wei L 2007 Appl. Phys. Lett. 90 042911
[16] Leite D M G and Silva J H D 2008 J. Phys.:Condens. Matter 20 055001
[17] Zhuo S Y, Liu X C, Huang W, Kong H K, Xin J and Shi E W 2019 Chin. Phys. B 28 017101
[18] Noh Y W, Jin I S, Park S H and Jung J W 2019 J. Mater. Sci. Technol.
[19] Yu X, Cui H, Zhu M, Xia Z and Sai Q 2019 Chin. Phys. B 28 077801
[20] Xue Y, Zheng L, Jiang D, Sai Q, Su L and Xu J 2019 Chin. Phys. B 28 037802
[21] Yao T S, Tang C Y, Yang M, Zhu K J, Yan D Y, Yi C J, Feng Z L, Lei H C, Li C H and Wang L 2019 Chin. Phys. Lett. 36 068101
[22] Li Y W, Wang X, Li G W, Wu Y, Pan Y Z, Xu Y B, Chen J and Lei W 2020 Chin. Phys. Lett. 37 018101
[23] Li L, Liu W, Han B, Jin X, Li F, Wang W, Zhou Q, Xu D and Cui T 2015 RSC Adv. 5 66988
[24] Niu X, Zhang H, Pei Z, Shi N, Sun C and Gong J 2019 J. Mater. Sci. Techn. 35 88
[25] Chen P, Zeng S, Zhao Y, Kang S, Zhang T and Song S 2020 J. Mater. Sci. Technol. 41 88
[26] Mei Q J, Li C Y, Guo J D, Huang S X, Zhang X H and Wu H T 2013 Ceram. Int. 39 9145
[27] Li L, Fan Y, Wang D, Feng G and Xu D 2011 Cryst. Res. Technol. 46 475
[28] Xu D, Gu Y, Li L, Shen H, Yang H, Zhou Q, Shi Z, Yuan H and Cui T 2014 J. Phys. Chem. Solids 75 1361
[29] Wemple S H and DiDomenico M 1969 Phys. Rev. Lett. 23 1156
[30] Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338
[31] Kan A, Ogawa H, Yokoi A and Nakamura Y 2007 J. Eur. Ceram. Soc. 27 2977
[32] Ogawa H, Kan A, Ishihara S and Higashida Y 2003 J. Eur. Ceram. Soc. 23 2485
[33] Gui D Y, Wang C H, Zhu W and Meng C 2018 J. Alloys Compd. 730 434
[34] Li L, Duan D, Zhou Q, Xu D, Cui T, Liu B, Shi Z and Yuan H 2015 J. Alloys Compd. 619 240
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] Enhanced absorption process in the thin active region of GaAs based p-i-n structure
Chen Yue(岳琛), Xian-Sheng Tang(唐先胜), Yang-Feng Li(李阳锋), Wen-Qi Wang(王文奇), Xin-Xin Li(李欣欣), Jun-Yang Zhang(张珺玚), Zhen Deng(邓震), Chun-Hua Du(杜春花), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Wei Lu(陆卫), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097803.
[4] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[5] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[6] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[7] Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2020, 29(6): 064207.
[8] Preparation and photoelectric properties of cadmium sulfide quantum dots
Yue Gu(古月), Libin Tang(唐利斌), Xiaopeng Guo(郭小鹏), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(4): 047803.
[9] SnS2 quantum dots: Facile synthesis, properties, and applications in ultraviolet photodetector
Yao Li(李尧), Libin Tang(唐利斌), Rujie Li(李汝劼), Jinzhong Xiang(项金钟), Kar Seng Teng, Shu Ping Lau(刘树平). Chin. Phys. B, 2019, 28(3): 037801.
[10] Effect of depositing PCBM on perovskite-based metal-oxide-semiconductor field effect transistors
Su-Zhen Luan(栾苏珍), Yu-Cheng Wang(汪钰成), Yin-Tao Liu(刘银涛), Ren-Xu Jia(贾仁需). Chin. Phys. B, 2018, 27(4): 047208.
[11] Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials
Xue-Lu Liu(刘雪璐), Xin Zhang(张昕), Miao-Ling Lin(林妙玲), Ping-Heng Tan(谭平恒). Chin. Phys. B, 2017, 26(6): 067802.
[12] An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization
Yin Tang(汤寅), Qing Cai(蔡青), Lian-Hong Yang(杨莲红), Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(3): 038503.
[13] Zn-Cu-codoped SnO2 nanoparticles:Structural, optical, and ferromagnetic behaviors
Syed Zulfiqar, Zainab Iqbal, Jianguo Lü(吕建国). Chin. Phys. B, 2017, 26(12): 126104.
[14] Spectral and ion emission features of laser-produced Sn and SnO2 plasmas
Hui Lan(兰慧), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗). Chin. Phys. B, 2016, 25(3): 035202.
[15] Design and experimental verification of a dual-band metamaterial filter
Hong-Yang Zhu(朱洪杨), Ai-Qin Yao(姚爱琴), Min Zhong(钟敏). Chin. Phys. B, 2016, 25(10): 107301.
No Suggested Reading articles found!