Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 076202    DOI: 10.1088/1674-1056/ab8a40
REVIEW Prev   Next  

Giant mechanocaloric materials for solid-state cooling

Junran Zhang(张俊然)1,2, Yixuan Xu(徐逸轩)1,2, Shihai An(安世海)3, Ying Sun(孙莹)3, Xiaodong Li(李晓东)1, Yanchun Li(李延春)1
1 Multidiscipline Research Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Sciences, Beihang University, Beijing 100191, China
Abstract  This article reviews the research progress of measurement techniques and materials on the mechanocaloric effect over the past few decades. Mechanocaloric materials can be divided into elastocaloric and barocaloric materials depending on the applied uniaxial stress or hydrostatic pressure. Elastocaloric materials include non-magnetic shape memory alloys, polymers, and rare-earth compounds. Barocaloric materials include magnetic shape memory alloys, ferroelectric ceramics, superionic conductors, and oxyfluorides. The mechanocaloric effects of these classes of materials are systematically compared in terms of the isothermal entropy change and adiabatic temperature change. In addition to the thermal effects, other characteristics closely related to the application of mechanocaloric materials are also summarized. Finally, perspectives for further development of mechanocaloric materials in the solid-state cooling area are discussed.
Keywords:  mechanocaloric materials      elastocaloric effect      barocaloric effect      solid-state cooling  
Received:  15 February 2020      Revised:  22 March 2020      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  81.40.Vw (Pressure treatment)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474280).
Corresponding Authors:  Yanchun Li     E-mail:  liyc@ihep.ac.cn

Cite this article: 

Junran Zhang(张俊然), Yixuan Xu(徐逸轩), Shihai An(安世海), Ying Sun(孙莹), Xiaodong Li(李晓东), Yanchun Li(李延春) Giant mechanocaloric materials for solid-state cooling 2020 Chin. Phys. B 29 076202

[1] Gough J 1805 Manchester Phil. Mem. Second Series 1 288
[2] Joule J P 1859 Philos. Trans. R. Soc. London 149 91
[3] Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
[4] Lu B and Liu J 2015 Sci. Bull. 60 1638
[5] Manosa L and Planes A 2017 Adv. Mater. 29 1603607
[6] Tusek J, Engelbrecht K, Millan-Solsona R, Manosa L, Vives E, Mikkelsen L P and Pryds N 2015 Adv. Energy Mater. 5 1500361
[7] Ossmer H, Miyazaki S and Kohl M 2015 Mater. Today-Proc. 2 971
[8] Manosa L and Planes A 2016 Philos. Trans. R. Soc. A 374 20150310
[9] Brown L C 1981 Metall. Mater. Tran. A 12 1491
[10] Bonnot E, Romero R, Manosa L, Vives E and Planes A 2008 Phys. Rev. Lett. 100 125901
[11] Mañosa L, Jarque-Farnos S, Vives E and Planes A 2013 Appl. Phys. Lett. 103 211904
[12] Qian S, Geng Y L, Wang Y, Pillsbury T E, Hada Y, Yamaguchi Y, Fujimoto K, Hwang Y H, Radermacher R, Cui J, Yuki Y J, Toyotake K and Takeuchi I 2016 Philos. Trans. R. Soc. A 374 20150309
[13] Vives E, Burrows S, Edwards R S, Dixon S, Mañosa L, Planes A and Romero R 2011 Appl. Phys. Lett. 98 011902
[14] Pataky G J, Ertekin E and Sehitoglu H 2015 Acta Mater. 96 420
[15] Bechtold C, Chluba C, Lima de Miranda R and Quandt E 2012 Appl. Phys. Lett. 101 091903
[16] Cui J, Wu Y, Muehlbauer J, Hwang Y, Radermacher R, Fackler S, Wuttig M and Takeuchi I 2012 Appl. Phys. Lett. 101 073904
[17] Tušek J, Engelbrecht K, Mikkelsen L P and Pryds N 2015 J. Appl. Phys. 117 124901
[18] Schmidt M, Frenzel J, Seelecke S, Ullrich J, Schutze A, Wieczorek A and Eggeler G 2016 Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 21-23 2015 Colorado Springs, Colorado, USA, p. 9
[19] Soto-Parra D, Vives E, Manosa L, Matutes-Aquino J A, Flores-Zuniga H and Planes A 2016 Appl. Phys. Lett. 108 071902
[20] Tusek J, Engelbrecht K and Pryds N 2016 Sci. Technol. Built. En. 22 489
[21] Xiao F, Fukuda T and Kakeshita T 2016 Scr. Mater. 124 133
[22] Luo X H, Ren W J, Jin W and Zhang Z D 2017 Chin. Phys. B 26 036501
[23] Liang X, Xiao F, Jin M J, Jin X J, Fukuda T and Kakeshita T 2017 Scr. Mater. 134 42
[24] Kakeshita T and Ullakko K 2002 MRS Bull. 27 105
[25] Cui J, Shield T W and James R D 2004 Acta Mater. 52 35
[26] Xiao F, Fukuda T, Kakeshita T and Jin X 2015 Acta Mater. 87 8
[27] Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
[28] Castillo-Villa P O, Manosa L, Planes A, Soto-Parra D E, Sanchez-Llamazares J L, Flores-Zuniga H and Frontera C 2013 J. Appl. Phys. 113 053506
[29] Lu B F, Xiao F, Yan A and Liu J 2014 Appl. Phys. Lett. 105 161905
[30] Millan-Solsona R, Stern-Taulats E, Vives E, Planes A, Sharma J, Nayak A K, Suresh K G and Manosa L 2014 Appl. Phys. Lett. 105 241901
[31] Huang C, Wang Y, Tang Z, Liao X, Yang S and Song X 2015 J. Alloys Compd. 630 244
[32] Huang Y J, Hu Q D, Bruno N M, Chen J H, Karaman I, Ross J H and Li J G 2015 Scr. Mater. 105 42
[33] Lu B, Zhang P, Xu Y, Sun W and Liu J 2015 Mater. Lett. 148 110
[34] Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J L, Pramanick S, Majumdar S, Yüce S, Emre B, Frontera C and Mañosa L 2015 Acta Mater. 96 324
[35] Li Y, Zhao D W and Liu J 2016 Sci. Rep. 6 25500
[36] Sun W, Liu J, Lu B F, Li Y and Yan A 2016 Scr. Mater. 114 1
[37] Yang Z, Cong D Y, Huang L, Nie Z H, Sun X M, Zhang Q H and Wang Y D 2016 Mater. 92 932
[38] Camarillo J P, Aguilar-Ortiz C O, Flores-Zuniga H, Rios-Jara D, Soto-Parra D E, Stern-Taulats E, Manosa L and Planes A 2017 Funct. Mater. Lett. 10 1740007
[39] Shen Q, Zhao D W, Sun W, Li Y and Liu J 2017 J. Alloys Compd. 696 538
[40] Yang Z, Cong D Y, Sun X M, Nie Z H and Wang Y D 2017 Acta Mater. 127 33
[41] Zhao D W, Liu J, Feng Y, Sun W and Yan A 2017 Appl. Phys. Lett. 110 021906
[42] Soto-Parra D E, Vives E, González-Alonso D, Mañosa L, Planes A, Romero R, Matutes-Aquino J A, Ochoa-Gamboa R A and FloresZ úñiga H 2010 Appl. Phys. Lett. 96 071912
[43] Castillo-Villa P O, Soto-Parra D E, Matutes-Aquino J A, Ochoa-Gamboa R A, Planes A, Mañosa L, González-Alonso D, Stipcich M, Romero R, Ríos-Jara D and Flores-Zúñiga H 2011 Phys. Rev. B 83 174109
[44] Nikitin S A, Myalikgulyev G, Annaorazov M P, Tyurin A L, Myndyev R W and Akopyan S A 1992 Phys. Lett. A 171 234
[45] Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J L, Pramanick S, Majumdar S, Frontera C and Mañosa L 2014 Phys. Rev. B 89 214105
[46] Stern-Taulats E, Grácia-Condal A, Planes A, Lloveras P, Barrio M, Tamarit J L, Pramanick S, Majumdar S and Mañosa L 2015 Appl. Phys. Lett. 107 152409
[47] de Medeiros L G, de Oliveira N A and Troper A 2008 J. Appl. Phys. 103 113909
[48] Manosa L, Gonzalez-Alonso D, Planes A, Barrio M, Tamarit J L, Titov I S, Acet M, Bhattacharyya A and Majumdar S 2011 Nat. Commun. 2 595
[49] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Nat. Mater. 14 73
[50] Yuce S, Barrio M, Emre B, Stern-Taulats E, Planes A, Tamarit J L, Mudryk Y, Gschneidner K A, Pecharsky V K and Mañosa L 2012 Appl. Phys. Lett. 101 071906
[51] Zou J D 2012 Chin. Phys. B 21 037503
[52] de Oliveira N A 2013 J. Appl. Phys. 113 033910
[53] Pecharsky V K and Gschneidner Jr K A 2001 Adv. Mater. 13 683
[54] Wu R R, Bao L F, Hu F X, Wu H, Huang Q Z, Wang J, Dong X L, Li G N, Sun J R, Shen F R, Zhao T Y, Zheng X Q, Wang L C, Liu Y, Zuo W L, Zhao Y Y, Zhang M, Wang X C, Jin C Q, Rao G H, Han X F and Shen B G 2016 Sci. Rep. 6 22826
[55] Navrotsky A 1998 Chem. Mater. 10 2787
[56] Liu Y, Wei J, Janolin P E, Infante I C, Kreisel J, Lou X J and Dkhil B 2014 Phys. Rev. B 90 104107
[57] Liu Y, Wei J, Janolin P E, Infante I C, Lou X and Dkhil B 2014 Appl. Phys. Lett. 104 162904
[58] Barr J A, Beckman S P and Nishimatsu T 2015 J. Phys. Soc. Jpn. 84 024716
[59] Chauhan A, Patel S and Vaish R 2015 Appl. Phys. Lett. 106 172901
[60] Patel S, Chauhan A and Vaish R 2016 Energy Tehnol. 4 647
[61] Stern-Taulats E, Lloveras P, Barrio M, Defay E, Egilmez M, Planes A, Tamarit J L, Manosa L, Mathur N D and Moya X 2016 APL Mater. 4 091102
[62] Wang F, Li B, Ou Y, Liu L F, Peng C Z, Wang Z S and Wang W 2016 RSC Adv. 6 70557
[63] Mikhaleva E A, Flerov I N, Gorev M V, Molokeev M S, Cherepakhin A V, Kartashev A V, Mikhashenok N V and Sablina K A 2012 Phys. Solid State 54 1832
[64] Lisenkov S and Ponomareva I 2012 Phys. Rev. B 86 104103
[65] Bermudez-Garcia J M, Sanchez-Andujar M and Senaris-Rodriguez M A 2017 J. Phys. Chem. Lett. 8 4419
[66] Bermudez-Garcia J M, Sanchez-Andujar M, Castro-Garcia S, Lopez-Beceiro J, Artiaga R and Senaris-Rodriguez M A 2017 Nat. Commun. 8 15715
[67] Dart S L, Anthony R L and Guth E 1942 Ind. Eng. Chem. 34 1340
[68] Xie Z, Sebald G and Guyomar D 2016 Appl. Phys. Lett. 108 041901
[69] Xie Z J, Sebald G and Guyomar D 2017 Appl. Therm. Eng. 111 914
[70] Sakata A, Suzuki N, Higashiura Y, Matsuo T and Sato T 2013 J. Therm. Anal. Calorim. 113 1555
[71] Rodriquez E L and Filisko F E 1982 J. Appl. Phys. 53 6536
[72] Roland C M, Garrett J T, Casalini R, Roland D F, Santangelo P G and Qadri S B 2004 Chem. Mater. 16 857
[73] Patel S, Chauhan A, Vaish R and Thomas P 2016 Appl. Phys. Lett. 108 072903
[74] Yoshida Y, Yuse K, Guyomar D, Capsal J F and Sebald G 2016 Appl. Phys. Lett. 108 242904
[75] Strässle T and Furrer A 2000 High Press. Res. 17 325
[76] Strasslea T, Furrer A, Altorfer F, Mattenberger K, Böhm M and Mutka H 2001 J. Alloys Compd. 323-324 392
[77] Strässle T, Furrer A, Dönni A and Komatsubara T 2002 J. Appl. Phys. 91 8543
[78] Hossain Z, Strässle T, Geibel C and Furrer A 2004 J. Magn. Magn. Mater. 272-276 2352
[79] Gorev M, Bogdanov E, Flerov I and Laptash N 2010 J. Phys.: Condens. Matter 22 185901
[80] Gorev M V, Bogdanov E V, Flerov I N, Kocharova A G and Laptash N M 2010 Phys. Solid State 52 167
[81] Gorev M V, Bogdanov E V, Flerov I N, Voronov V N and Laptash N M 2010 Ferroelectrics 397 76
[82] Gorev M V, Flerov I N, Bogdanov E V, Voronov V N and Laptash N M 2010 Phys. Solid State 52 377
[83] Flerov I N, Gorev M V, Bogdanov E V and Laptash N M 2016 Ferroelectrics 500 153
[84] Udovenko A A and Laptash N M 2008 Acta Crystallogr. Sect. B: Struct. Sci. 64 527
[85] Dieterich W 1985 J. Stat. Phys. 39 583
[86] Cazorla C and Errandonea D 2016 Nano Lett. 16 3124
[87] Aznar A, Lloveras P, Romanini M, Barrio M, Tamarit J L, Cazorla C, Errandonea D, Mathur N D, Planes A, Moya X and Manosa L 2017 Nat. Commun. 8 1851
[88] Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J, Chen Y, Kawaguchi S I, Kawaguchi S, Ohara K, Li K, Yu D, Mole R, Hattori T, Kikuchi T, Yano S I, Zhang Z, Zhang Z, Ren W, Lin S, Sakata O, Nakajima K and Zhang Z 2019 Nature 567 506
[89] Lloveras P, Aznar A, Barrio M, Negrier P, Popescu C, Planes A, Manosa L, Stern-Taulats E, Avramenko A, Mathur N D, Moya X and Tamarit J L 2019 Nat. Commun. 10 1803
[90] Lloveras P, Stern-Taulats E, Barrio M, Tamarit J L, Crossley S, Li W, Pomjakushin V, Planes A, Manosa L, Mathur N D and Moya X 2015 Nat. Commun. 6 8801
[91] Carvalho A M G, Imamura W, Usuda E O and Bom N M 2018 Eur. Polym. J. 99 212
[92] Cong D, Xiong W, Planes A, Ren Y, Manosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X and Wang Y 2019 Phys. Rev. Lett. 122 255703
[93] Rodriguez C and Brown L C 1980 Metall. Mater. Tran. A 11 147
[94] Ossmer H, Lambrecht F, Gultig M, Chluba C, Quandt E and Kohl M 2014 Acta Mater. 81 9
[95] Xiao F, Jin M, Liu J and Jin X 2015 Acta Mater. 96 292
[96] Wu R R, Bao L F, Hu F X, Wu H, Huang Q Z, Wang J, Dong X L, Li G N, Sun J R, Shen F R, Zhao T Y, Zheng X Q, Wang L C, Liu Y, Zuo W L, Zhao Y Y, Zhang M, Wang X C, Jin C Q, Rao G H, Han X F and Shen B G 2015 Sci. Rep. 5 18027
[97] Samanta T, Lloveras P, Us Saleheen A, Lepkowski D L, Kramer E, Dubenko I, Adams P W, Young D P, Barrio M, Tamarit J L, Ali N and Stadler S 2018 Appl. Phys. Lett. 112 021907
[98] Mañosa L, Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J L, Emre B, Yüce S, Fabbrici S and Albertini F 2014 Phys. Status Solidi B 251 2114
[99] Flerov I N, Kartashev A V, Gorev M V, Bogdanov E V, Mel'nikova S V, Molokeev M S, Pogoreltsev E I and Laptash N M 2016 J. Fluor. Chem. 183 1
[1] High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺). Chin. Phys. B, 2022, 31(3): 036802.
[2] Elastocaloric effect and mechanical behavior for NiTi shape memory alloys
Min Zhou(周敏), Yu-Shuang Li(李玉霜), Chen Zhang(张晨), Lai-Feng Li(李来风). Chin. Phys. B, 2018, 27(10): 106501.
[3] Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2017, 26(3): 036501.
No Suggested Reading articles found!