Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077801    DOI: 10.1088/1674-1056/ab99b4

A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys

Songül Taran1, Ali Kemal Garip2, Haydar Arslan2
1 Department of Physics, Duzce University, Duzce 81620, Turkey;
2 Department of Physics, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
Abstract  In this study, truncated octahedron (TO) structure is selected for further analysis and we focus on 38-atom Pd-Pt-Ag trimetallic nanoalloys. The best chemical ordering structures of PdnAg32-nPt6 trimetallic nanoalloys are obtained at Gupta level. The structures with the lowest energy at Gupta level are then re-optimized by density functional theory (DFT) relaxations and DFT results confirm the Gupta level calculations with small shifts on bond lengths indicating TO structure is favorable for 38-atom of PdnAg32-nPt6 trimetallic nanoalloys. The DFT excess energy analysis shows that Pd8Ag24Pt6 composition has the lowest excess energy value in common with excess energy analysis at Gupta level. In Pd8Ag24Pt6 composition, eight Pd atoms are central sites of 8 (111) hexagonal facets of TO, 24 Ag atoms locate on surface, and 6 Pt atoms locate at the core of the structure. It is also obtained that all of the compositions except Pd18Ag14Pt6 and Pd20Ag12Pt6 exhibit a octahedral Pt core. Besides, it is observed that there is a clear tendency for Ag atoms to segregate to the surface and also Pt atoms prefer to locate at core due to order parameter (R) variations.
Keywords:  nanoalloys      chemical ordering      optimization      density functional theory (DFT)  
Received:  25 March 2020      Revised:  28 May 2020      Published:  05 July 2020
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  36.40.-c (Atomic and molecular clusters)  
Corresponding Authors:  Songül Taran     E-mail:

Cite this article: 

Songül Taran, Ali Kemal Garip, Haydar Arslan A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys 2020 Chin. Phys. B 29 077801

[1] Kaiser J, Leppert L, Welz H, Polzer F, Wunder S, Wanderka N, Albrecht M, Lunkenbein T, Breu J, Kümmel S, Lu Y and Ballauff M 2012 Phys. Chem. Chem. Phys. 14 6487
[2] Rodrigues D D C, Nascimento A M, Duarte H A and Belchior J C 2008 Chem. Phys. 349 91
[3] Chen F and Johnston R L 2008 ACS Nano 2 165
[4] Darby S, Mortimer-Jones T V, Johnston R L and Roberts C 2002 J. Chem. Phys. 116 1536
[5] Davis J B A, Johnston R L, Rubinovich L and Polak M 2014 J. Chem. Phys. 141 224307
[6] Curley B C, Rossi G, Ferrando R and Johnston R L 2007 Eur. Phys. J. D 43 53
[7] Zhu B, Front A, Guesmi H, Creuze J, Legrand B and Mottet C 2017 Comput. Theor. Chem. 1107 49
[8] Demiroglu I, Li Z Y, Piccolo L and Johnston R L 2016 Catal. Sci. Technol. 6 6916
[9] Negreiros F R, Taherkhani F, Parsafar G, Caro A and Fortunelli A 2012 J. Chem. Phys. 137 194302
[10] Fan T E, Demiroglu I, Hussein H A, Liu T D and Johnston R L 2017 Phys. Chem. Chem. Phys. 19 27090
[11] Demiroglu I, Li Z Y, Piccolo L and Johnston R L 2017 Comput. Theor. Chem. 1107 142
[12] Ismail R 2012 Theoretical studies of free and supported nanoalloy clusters, Ph. D. Dissertation (The Universiry of Birmingham)
[13] Pacheco-Contreras R, Juárez-Sáchez J O, Dessens-Félix M, Aguilera-Granja F, Fortunelli A and Posada-Amarillas A 2018 Comput. Mater. Sci. 141 30
[14] Rapetti D and Ferrando R 2019 J. Alloys Compd. 779 582
[15] Michaelian K, Rendón N and Garzón I L 1999 Phys. Rev. B 60 2000
[16] Bailey M S, Wilson N T, Roberts C and Johnston R L 2003 Eur. Phys. J. D 25 41
[17] Roberts C, Johnston R L and T W N 2000 Theor. Chem. Acc. 104 123
[18] Doye J P K and Wales D J 1998 New J. Chem. 22 733
[19] Lathiotakis N N, Andriotis A N, Menon M and Connolly J 1996 J. Chem. Phys. 104 992
[20] Johnston R L, Paz-Borbón L O, Barcaro G and Fortunelli A 2008 J. Chem. Phys. 128 134517
[21] Cerbelaud M, Ferrando R, Barcaro G and Fortunelli A 2011 Phys. Chem. Chem. Phys. 13 10232
[22] Molayem M, Grigoryan V G and Springborg M 2011 J. Phys. Chem. C 115 22148
[23] Guerrero-Jordan J, Cabellos J L, Johnston R L and Posada-Amarillas A 2018 Eur. Phys. J. B 91 123
[24] Pittaway F, Paz-Borbón L O, Johnston R L, Arslan H, Ferrando R, Mottet C, Barcaro G and Fortunelli A 2009 J. Phys. Chem. C 113 9141
[25] Oderji H Y and Ding H 2011 Chem. Phys. 388 23
[26] Wu G H, Liu Q M and Wu X 2015 Chem. Phys. Lett. 620 92
[27] Wu G, Sun Y, Wu X, Chen R and Wang Y 2017 Chem. Phys. Lett. 686 103
[28] Die D, Zheng B X, Yue J Y, Guo J J and Du Q 2020 Physica E 117 113805
[29] Fu Y C, Die D, Chen L, Zhu B and Yin H L 2020 Mol. Phys. 118 1622051
[30] Cyrot-Lackmann F and Ducastelle F 1971 Phys. Rev. B 4 2406
[31] Rosato V, Guillope M and Legrand B 1989 Philos. Mag. A 59 321
[32] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[33] Garip A K 2019 Mol. Simul. 45 1004
[34] Wales D J and Doye J P K 1997 J. Phys. Chem. A 101 5111
[35] Wales D J and Scheraga A H 1999 Science 285 1368
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[38] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.: Condens. Matter 29 465901
[39] Garip A K 2018 Int. J. Mod. Phys. C 29 1850084
[40] Du R B, Xu Y Q, Wu X and Liu T 2018 Struct. Chem. 30 637
[41] Ferrando R 2018 Front. Nanosci. 12 189
[42] Ferrando R 2015 J. Phys.: Condens. Matter 27 013003
[1] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[2] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[3] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[4] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[5] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[6] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[7] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[8] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[9] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[10] Optimization of a magneto-optic trap using nanofibers
Xin Wang(王鑫), Li-Jun Song(宋丽军), Chen-Xi Wang(王晨曦), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(7): 073701.
[11] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[12] Energy-optimal problem of multiple nonholonomic wheeled mobile robots via distributed event-triggered optimization algorithm
Ying-Wen Zhang(张潆文), Jin-Huan Wang(王金环), Yong Xu(徐勇), De-Dong Yang(杨德东). Chin. Phys. B, 2019, 28(3): 030501.
[13] Investigation and optimization of sampling characteristics of light field camera for flame temperature measurement
Yudong Liu(刘煜东), Md. Moinul Hossain, Jun Sun(孙俊), Biao Zhang(张彪), Chuanlong Xu(许传龙). Chin. Phys. B, 2019, 28(3): 034207.
[14] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[15] Baseline optimization for scalar magnetometer array and its application in magnetic target localization
Li-Ming Fan(樊黎明), Quan Zheng(郑权), Xi-Yuan Kang(康曦元), Xiao-Jun Zhang(张晓峻), Chong Kang(康崇). Chin. Phys. B, 2018, 27(6): 060703.
No Suggested Reading articles found!